registered_covariance_function: Construct a registered covariance matrix from the Euclidean...

Description Usage Arguments Value Examples

View source: R/registered.covariance.function.R

Description

This function constructs a covariance function from the Euclidean coordinates of the objects. The covairance function may be squared exponential, rational quadratic or Matern.

Usage

1
2
3
4
5
6
7
8
registered_covariance_function(
  coordinates,
  type,
  hyperparameters,
  linear.combination,
  linear.constraint = 0,
  tol = 1e-05
)

Arguments

coordinates

An Nx2 matrix containing the Euclidean coordinates of the nodes.

type

The type of covariance function used. One of "sqexp", "ratquad" or "matern". Note: only matern with nu = 5/2 is supported.

hyperparameters

A vector containing the covariance function hyperparameters. For the squared exponential and matern, the vector should contain the variance and length scale, for the rational quadratic, the vector should contain the variance, lenght scale and scaling parameters

linear.combination

A matrix which defines the linear combination of (lambda_1, ..., lambda_N)^T.

linear.constraint

The value the linear constraint takes. Defaults to 0.

tol

The tolerance for the Cholesky decomposition

Value

The mean vector and covariance matrix

Examples

1
2
3
4
5
6
#Generate 10 points and create covariance matrix using Euclidean distance metric
coords <- data.frame("x" = runif(10), "y" = runif(10)) #generate coordinates
#create covariance matrix using Squared Exponential function and subject to the constraint
#the sum of the deprivation levels is 0.
k <- registered_covariance_function(coords, "sqexp",
c(1, 0.5), rep(1, 10), linear.constraint = 0, tol = 1e-5)

jasa-btun-anon/BTUN documentation built on Sept. 12, 2020, 12:54 a.m.