View source: R/profileProcess.R
| profileProcess | R Documentation |
process metabolomic profiling data
profileProcess(file_paths, sample_info, parameters)
file_paths |
character vector of file paths to use for processing |
sample_info |
tibble containing sample info |
parameters |
object of class ProfileParameters containing the parameters for processing |
An S4 object of class MetaboProfile
profileParameters
## Not run:
# LCMS-RP example using the faahKO package data
## Retrieve file paths
file_paths <- list.files(
system.file("cdf",
package = "faahKO"),
full.names = TRUE,
recursive = TRUE)[1:2]
file_names <- basename(file_paths)
sample_names <- tools::file_path_sans_ext(file_names)
## Generate sample information table
sample_info <- tibble(fileOrder = seq_along(file_paths),
injOrder = seq_along(file_paths),
fileName = file_names,
batch = 1,
block = 1,
name = sample_names,
class = substr(sample_names,1,2))
## Generate profiling parameters
parameters <- profileParameters('LCMS-RP')
processingParameters(parameters)$peakDetection <- CentWaveParam(snthresh = 20,
noise = 1000)
processingParameters(parameters)$retentionTimeCorrection <- ObiwarpParam()
processingParameters(parameters)$grouping <- PeakDensityParam(sampleGroups = sample_info$class,
maxFeatures = 300,
minFraction = 2/3)
## Specify parallel processing plan
plan('sequential')
## Process data
processed_data <- profileProcess(file_paths,sample_info,parameters)
# GCMS-XCMS example using the gcspikelite package data
## Retrieve file paths
file_paths <- list.files(
system.file('data',
package = 'gcspikelite'),
pattern = '.CDF',
full.names = TRUE)[1:2]
file_names <- basename(file_paths)
sample_names <- tools::file_path_sans_ext(file_names)
## Generate sample information table
sample_info <- tibble(fileOrder = seq_along(file_paths),
injOrder = seq_along(file_paths),
fileName = file_names,
batch = 1,
block = 1,
name = sample_names,
class = targets$Group[1:2])
## Generate profiling parameters
parameters <- profileParameters('GCMS-XCMS')
## Specify parallel processing plan
plan('sequential')
## Process data
processed_data <- profileProcess(file_paths,sample_info,parameters)
# GCMS-eRah example using the gcspikelite package data
## Retrieve file paths
file_paths <- list.files(
system.file('data',
package = 'gcspikelite'),
pattern = '.CDF',
full.names = TRUE)[1:2]
file_names <- basename(file_paths)
sample_names <- tools::file_path_sans_ext(file_names)
## Generate sample information table
sample_info <- tibble(fileOrder = seq_along(file_paths),
injOrder = seq_along(file_paths),
fileName = file_names,
batch = 1,
block = 1,
name = sample_names,
class = targets$Group[1:2])
## Generate profiling parameters
parameters <- profileParameters('GCMS-eRah')
## Specify parallel processing plan
plan('sequential')
## Process data
processed_data <- profileProcess(file_paths,sample_info,parameters)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.