View source: R/profileProcess.R
profileProcess | R Documentation |
process metabolomic profiling data
profileProcess(file_paths, sample_info, parameters)
file_paths |
character vector of file paths to use for processing |
sample_info |
tibble containing sample info |
parameters |
object of class ProfileParameters containing the parameters for processing |
An S4 object of class MetaboProfile
profileParameters
## Not run: # LCMS-RP example using the faahKO package data ## Retrieve file paths file_paths <- list.files( system.file("cdf", package = "faahKO"), full.names = TRUE, recursive = TRUE)[1:2] file_names <- basename(file_paths) sample_names <- tools::file_path_sans_ext(file_names) ## Generate sample information table sample_info <- tibble(fileOrder = seq_along(file_paths), injOrder = seq_along(file_paths), fileName = file_names, batch = 1, block = 1, name = sample_names, class = substr(sample_names,1,2)) ## Generate profiling parameters parameters <- profileParameters('LCMS-RP') processingParameters(parameters)$peakDetection <- CentWaveParam(snthresh = 20, noise = 1000) processingParameters(parameters)$retentionTimeCorrection <- ObiwarpParam() processingParameters(parameters)$grouping <- PeakDensityParam(sampleGroups = sample_info$class, maxFeatures = 300, minFraction = 2/3) ## Specify parallel processing plan plan('sequential') ## Process data processed_data <- profileProcess(file_paths,sample_info,parameters) # GCMS-XCMS example using the gcspikelite package data ## Retrieve file paths file_paths <- list.files( system.file('data', package = 'gcspikelite'), pattern = '.CDF', full.names = TRUE)[1:2] file_names <- basename(file_paths) sample_names <- tools::file_path_sans_ext(file_names) ## Generate sample information table sample_info <- tibble(fileOrder = seq_along(file_paths), injOrder = seq_along(file_paths), fileName = file_names, batch = 1, block = 1, name = sample_names, class = targets$Group[1:2]) ## Generate profiling parameters parameters <- profileParameters('GCMS-XCMS') ## Specify parallel processing plan plan('sequential') ## Process data processed_data <- profileProcess(file_paths,sample_info,parameters) # GCMS-eRah example using the gcspikelite package data ## Retrieve file paths file_paths <- list.files( system.file('data', package = 'gcspikelite'), pattern = '.CDF', full.names = TRUE)[1:2] file_names <- basename(file_paths) sample_names <- tools::file_path_sans_ext(file_names) ## Generate sample information table sample_info <- tibble(fileOrder = seq_along(file_paths), injOrder = seq_along(file_paths), fileName = file_names, batch = 1, block = 1, name = sample_names, class = targets$Group[1:2]) ## Generate profiling parameters parameters <- profileParameters('GCMS-eRah') ## Specify parallel processing plan plan('sequential') ## Process data processed_data <- profileProcess(file_paths,sample_info,parameters) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.