context("Discover Distributions - Beta prime")
options <- jaspTools::analysisOptions("LDbetaPrime")
options$alpha <- 3
options$andersonDarling <- TRUE
options$beta <- 2
options$ciInterval <- TRUE
options$ciIntervalInterval <- 0.95
options$cramerVonMisses <- TRUE
options$ecdf <- TRUE
options$estCDF <- TRUE
options$estPDF <- TRUE
options$explanatoryText <- TRUE
options$highlightDensity <- TRUE
options$highlightProbability <- TRUE
options$histogram <- TRUE
options$kolmogorovSmirnov <- TRUE
options$methodMLE <- TRUE
options$moments <- TRUE
options$newVariableName <- ""
options$outputEstimates <- TRUE
options$outputSE <- TRUE
options$parsSupportMoments <- TRUE
options$plotCDF <- TRUE
options$plotQF <- TRUE
options$ppplot <- TRUE
options$qqplot <- TRUE
options$qqPlotCi <- FALSE
options$qqPlotCiLevel <- 0.95
options$ppPlotCi <- FALSE
options$ppPlotCiLevel <- 0.95
options$summary <- TRUE
options$variable <- "betaPrime"
set.seed(1)
results <- jaspTools::runAnalysis("LDbetaPrime",
data.frame(betaPrime = jaspDistributions:::rbetaprime(n = 100, alpha = options[["alpha"]], beta = options[["beta"]])),
options)
test_that("Empirical Cumulative Distribution plot matches", {
plotName <- results[["results"]][["dataContainer"]][["collection"]][["dataContainer_ecdf"]][["data"]]
testPlot <- results[["state"]][["figures"]][[plotName]][["obj"]]
jaspTools::expect_equal_plots(testPlot, "empirical-cumulative-distribution")
})
test_that("Histogram plot matches", {
plotName <- results[["results"]][["dataContainer"]][["collection"]][["dataContainer_histogram"]][["data"]]
testPlot <- results[["state"]][["figures"]][[plotName]][["obj"]]
jaspTools::expect_equal_plots(testPlot, "histogram")
})
test_that("Observed Moments table results match", {
table <- results[["results"]][["dataContainer"]][["collection"]][["dataContainer_moments"]][["data"]]
jaspTools::expect_equal_tables(table,
list(2.4301120377492, 1, 2.4301120377492, 11.5101121267488, 2, 17.4155566427624
))
})
test_that("Descriptives table results match", {
table <- results[["results"]][["dataContainer"]][["collection"]][["dataContainer_summary"]][["data"]]
jaspTools::expect_equal_tables(table,
list(25.0357957064642, 2.4301120377492, 1.47751159829159, 0.182772644739979,
0.798562302220768, 2.76702068198904, 100, 3.40974718793122,
11.6263758856048, "betaPrime"))
})
test_that("Estimated Parameters table results match", {
table <- results[["results"]][["mleContainer"]][["collection"]][["mleContainer_estParametersTable"]][["data"]]
jaspTools::expect_equal_tables(table,
list(3.31729849561452, 2.41868527670883, "<unicode>", 0.45848455685606,
4.2159117145202, 2.38019937854015, 1.75396352445374, "<unicode>",
0.319513959963588, 3.00643523262656))
})
test_that("Empirical vs. Theoretical CDF plot matches", {
plotName <- results[["results"]][["mleContainer"]][["collection"]][["mleContainer_mleFitAssessment"]][["collection"]][["mleContainer_mleFitAssessment_estCDF"]][["data"]]
testPlot <- results[["state"]][["figures"]][[plotName]][["obj"]]
jaspTools::expect_equal_plots(testPlot, "empirical-vs-theoretical-cdf")
})
test_that("Histogram vs. Theoretical PDF plot matches", {
plotName <- results[["results"]][["mleContainer"]][["collection"]][["mleContainer_mleFitAssessment"]][["collection"]][["mleContainer_mleFitAssessment_estPDF"]][["data"]]
testPlot <- results[["state"]][["figures"]][[plotName]][["obj"]]
jaspTools::expect_equal_plots(testPlot, "histogram-vs-theoretical-pdf")
})
test_that("Fit Statistics table results match", {
table <- results[["results"]][["mleContainer"]][["collection"]][["mleContainer_mleFitAssessment"]][["collection"]][["mleContainer_mleFitAssessment_fitStatisticsTable"]][["data"]]
jaspTools::expect_equal_tables(table,
list(0.996968032372823, 0.0402149734077332, "Kolmogorov-Smirnov", 0,
0, 0, 0.766688001893232, 0.298918203363224, "Cram<unicode>r-von Mises",
0, 0, 0, 0.117513566860568, 3.72547691369411, "Anderson-Darling"
))
})
test_that("P-P plot matches", {
plotName <- results[["results"]][["mleContainer"]][["collection"]][["mleContainer_mleFitAssessment"]][["collection"]][["mleContainer_mleFitAssessment_ppplot"]][["data"]]
testPlot <- results[["state"]][["figures"]][[plotName]][["obj"]]
jaspTools::expect_equal_plots(testPlot, "p-p-plot")
})
test_that("Q-Q plot matches", {
plotName <- results[["results"]][["mleContainer"]][["collection"]][["mleContainer_mleFitAssessment"]][["collection"]][["mleContainer_mleFitAssessment_qqplot"]][["data"]]
testPlot <- results[["state"]][["figures"]][[plotName]][["obj"]]
jaspTools::expect_equal_plots(testPlot, "q-q-plot")
})
test_that("Cumulative Probability Plot matches", {
plotName <- results[["results"]][["plotCDF"]][["collection"]][["plotCDF_cdfPlot"]][["data"]]
testPlot <- results[["state"]][["figures"]][[plotName]][["obj"]]
jaspTools::expect_equal_plots(testPlot, "cumulative-probability-plot")
})
test_that("Density Plot matches", {
plotName <- results[["results"]][["plotPDF"]][["collection"]][["plotPDF_pdfPlot"]][["data"]]
testPlot <- results[["state"]][["figures"]][[plotName]][["obj"]]
jaspTools::expect_equal_plots(testPlot, "density-plot")
})
test_that("Quantile Plot matches", {
plotName <- results[["results"]][["plotQF"]][["collection"]][["plotQF_qfPlot"]][["data"]]
testPlot <- results[["state"]][["figures"]][[plotName]][["obj"]]
jaspTools::expect_equal_plots(testPlot, "quantile-plot")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.