get_predictions_cgam <- function(model, fitfram, ci.lvl, linv, value_adjustment, model_class, terms, condition, ...) {
# does user want standard errors?
se <- !is.null(ci.lvl) && !is.na(ci.lvl)
# does user want standard errors?
if (se)
interval <- "confidence"
else
interval <- "none"
# compute ci, two-ways
if (!is.null(ci.lvl) && !is.na(ci.lvl))
ci <- (1 + ci.lvl) / 2
else
ci <- .975
prdat <- stats::predict(
model,
newData = fitfram,
type = "link",
interval = "none",
...
)
# copy predictions
if (typeof(prdat) == "double")
.predicted <- prdat
else
.predicted <- prdat$fit
# get standard errors, if computed
# get predicted values, on link-scale
fitfram$predicted <- .predicted
if (se) {
se.pred <-
.standard_error_predictions(
model = model,
prediction_data = fitfram,
value_adjustment = value_adjustment,
terms = terms,
model_class = model_class,
vcov.fun = NULL,
vcov.type = NULL,
vcov.args = NULL,
condition = condition,
interval = interval
)
if (.check_returned_se(se.pred)) {
fitfram <- se.pred$prediction_data
se.fit <- se.pred$se.fit
se <- TRUE
} else {
se.fit <- NULL
se <- FALSE
}
} else {
se.pred <- NULL
}
if (se) {
fitfram$conf.low <- linv(fitfram$predicted - stats::qnorm(ci) * se.fit)
fitfram$conf.high <- linv(fitfram$predicted + stats::qnorm(ci) * se.fit)
# copy standard errors
attr(fitfram, "std.error") <- se.fit
if (!is.null(se.pred) && length(se.pred) > 0)
attr(fitfram, "prediction.interval") <- attr(se.pred, "prediction_interval")
} else {
# No CI
fitfram$conf.low <- NA
fitfram$conf.high <- NA
}
# transform predicted values
fitfram$predicted <- linv(fitfram$predicted)
fitfram
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.