simulate_predictions <- function(model, nsim, clean_terms, ci, type) {
fitfram <- insight::get_data(model)
fam <- insight::model_info(model)
if (fam$is_binomial || fam$is_multinomial || fam$is_ordinal || fam$is_categorical)
stop("Can't simulate predictions from models with binary, categorical or ordinal outcome. Please use another option for argument `type`.", call. = FALSE)
if (type == "sim") {
ref <- NULL
} else {
ref <- NA
}
sims <- stats::simulate(model, nsim = nsim, re.form = ref)
fitfram$predicted <- apply(sims, 1, mean)
fitfram$conf.low <- apply(sims, 1, stats::quantile, probs = 1 - ci)
fitfram$conf.high <- apply(sims, 1, stats::quantile, probs = ci)
fitfram$std.error <- apply(sims, 1, stats::sd)
means_predicted <- tapply(
fitfram$predicted,
lapply(clean_terms, function(i) fitfram[[i]]),
function(j) mean(j, na.rm = TRUE),
simplify = FALSE
)
means_conf_low <- tapply(
fitfram$conf.low,
lapply(clean_terms, function(i) fitfram[[i]]),
function(j) mean(j, na.rm = TRUE),
simplify = FALSE
)
means_conf_high <- tapply(
fitfram$conf.high,
lapply(clean_terms, function(i) fitfram[[i]]),
function(j) mean(j, na.rm = TRUE),
simplify = FALSE
)
means_se <- tapply(
fitfram$std.error,
lapply(clean_terms, function(i) fitfram[[i]]),
function(j) mean(j, na.rm = TRUE),
simplify = FALSE
)
terms_df <- data.frame(expand.grid(attributes(means_predicted)$dimnames), stringsAsFactors = FALSE)
colnames(terms_df) <- clean_terms
terms_df <- .convert_numeric_factors(terms_df)
fitfram <- cbind(
terms_df,
predicted = unlist(lapply(means_predicted, function(i) if (is.null(i)) NA else i)),
conf.low = unlist(lapply(means_conf_low, function(i) if (is.null(i)) NA else i)),
conf.high = unlist(lapply(means_conf_high, function(i) if (is.null(i)) NA else i)),
std.error = unlist(lapply(means_se, function(i) if (is.null(i)) NA else i))
)
rownames(fitfram) <- NULL
fitfram <- fitfram[stats::complete.cases(fitfram), , drop = FALSE]
if (length(clean_terms) == 1) {
fitfram <- fitfram[order(fitfram[[1]]), , drop = FALSE]
} else if (length(clean_terms) == 2) {
fitfram <- fitfram[order(fitfram[[1]], fitfram[[2]]), , drop = FALSE]
} else if (length(clean_terms) == 3) {
fitfram <- fitfram[order(fitfram[[1]], fitfram[[2]], fitfram[[3]]), , drop = FALSE]
} else if (length(clean_terms) == 4) {
fitfram <- fitfram[order(fitfram[[1]], fitfram[[2]], fitfram[[3]], fitfram[[4]]), , drop = FALSE]
}
fitfram
}
.do_simulate <- function(model, terms, ci, type = "sim", ...) {
clean_terms <- .clean_terms(terms)
add.args <- lapply(match.call(expand.dots = FALSE)$`...`, function(x) x)
if ("nsim" %in% names(add.args))
nsim <- eval(add.args[["nsim"]])
else
nsim <- 1000
simulate_predictions(model, nsim, clean_terms, ci, type)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.