forecaster: forecaster

Description Usage Arguments Value Examples

View source: R/forecaster.R

Description

Function implementing the forecasting module in the DFML architecture

Usage

1
forecaster(Z, family = FORECAST_FAMILY, parameters = NULL, h)

Arguments

Z
  • nxk matrix containing the k time series as columns, each one of length n time steps

family
  • Forecasting family of method to employ - String among those defined in FORECAST_FAMILY

parameters
  • Parameters to be passed to the forecaster function - List

                  The method name is passed through the \code{parameters$method} and should be one among those defined in \code{MULTISTEPAHEAD_METHODS}, \code{M4_METHODS}, \code{GRADIENT_BOOSTING_METHODS} 
                  
                  For the different methods family, at least the embedding order/model order \code{m} is required.
                  
                  For additional parameters:
                  \itemize{
                    \item{\code{MULTISTEPAHEAD_METHODS}: }{See \pkg{gbcode::multipleStepAhead} documentation for the role of the different parameters}
                    \item{\code{M4_METHODS}: }{No specific parameters required}
                    \item{\code{GRADIENT_BOOSTING_METHODS}: }{ 
                           \itemize{
                              \item{\code{multistep_method:}{Multistep method to be chosen between \code{direct} and \code{recursive}}}
                              \item{\code{forecasting_method:}{Forecasting method to be chosen between \code{lightgbm} and \code{xgboost}}}
                            }
                           See \pkg{lightgbm} and \pkg{xgboost} documentation for the role of the different parameters}
                  }
    
h
  • Forecasting horizon - numeric scalar

Value

List containing:

Examples

1
#See tests/testthat directory on https://github.com/jdestefani/ExtendedDFML

jdestefani/ExtendedDFML documentation built on Dec. 20, 2021, 10:04 p.m.