gradientBoostingForecaster: gradientBoostingForecaster

Description Usage Arguments Value

View source: R/gradientBoosting.R

Description

gradientBoostingForecaster

Usage

1
2
3
4
5
6
7
8
9
gradientBoostingForecaster(
  ts,
  embedding,
  horizon,
  delay = 0,
  multistep_method = c("recursive", "direct"),
  forecasting_method = c("lightgbm", "xgboost"),
  forecasting_params = NULL
)

Arguments

ts
  • Input time series as a vector

embedding
  • Embedding order

horizon
  • Forecasting horizon

delay
  • Delay for forecasting

multistep_method
  • Multistep method (to be chosen among "recursive" and "direct")

forecasting_method
  • Gradient boosting forecasting method (to be chosen among "lightgbm" and "xgboost")

forecasting_params
  • Parameters to be passed to the forecaster function - List

    • multistep_method:Multistep method to be chosen between direct and recursive

    • forecasting_method:Forecasting method to be chosen between lightgbm and xgboost

                           See \pkg{lightgbm} and \pkg{xgboost} documentation for the role of the different parameters
    

Value

h-step forecast of ts using the chosen multistep_method and forecasting method, with the given embedding order


jdestefani/ExtendedDFML documentation built on Dec. 20, 2021, 10:04 p.m.