# ---- roxygen documentation ----
#
#' @title Team shooting analysis
#'
#' @description
#' Calculate spatially adjusted team-based shooting statistics using spatially explicit model of NHL scoring probability.
#'
#' @details
#' Will be expanded later on.
#'
#' @param model a dataframe, specifically, ouput from the function \code{NHLmodel}.
#' @param shots the raw data shots file that was used as input into the function \code{shots2model}.
#'
#' @return
#' The function returns a dataframe with spatially adjusted team shooting statistics.
#'
# @references
# @keywords
# @examples
#'
#' @export
#
# ---- End of roxygen documentation ----
#Function to Process Team CGP Statistics
teams <- function(model,shots){
data(teamInfo)
teamInfo$Goals <- 0
teamInfo$Shots <- 0
teamInfo$Eg <-0
xx <- -89:-25
yy <- -42:42
for (i in 1:30){ #Vegas will be 31
shts <- subset(shots,TeamID == i)
shts <- subset(shts, Goalie == 901) #No EN or Penalty Shots
gls <- subset(shts,PLAYID == 505)
svs <- subset(shts,PLAYID == 506)
mis <- subset(shts,PLAYID == 507)
blk <- subset(shts,PLAYID == 508)
xy <- expand.grid(x=xx,y=yy)
xy$xi <- 0
xy$ni <- 0
xy$pi <- model$p_postmean
## Spatial Pool shots to model format.
for (j in 1:dim(xy)[1]){
xi <- xy$x[j]
yi <- xy$y[j]
n.g <- length(which(gls$x==xy$x[j] & gls$y==xy$y[j]))
n.s <- length(which(svs$x==xy$x[j] & svs$y==xy$y[j]))
n.m <- length(which(mis$x==xy$x[j] & mis$y==xy$y[j]))
n.b <- length(which(blk$x==xy$x[j] & blk$y==xy$y[j]))
xy$xi[j] <- n.g
xy$ni[j] <- n.g + n.s #+ n.m + n.b
}
teamInfo$Goals[i] <- sum(xy$xi)
teamInfo$Shots[i] <- sum(xy$ni)
teamInfo$Eg[i] <- sum(xy$ni * xy$pi)
}
teamInfo$GD <- teamInfo$Goals - teamInfo$Eg
teamInfo$SPCT <- teamInfo$Goals / teamInfo$Shots * 100
teamInfo$adjSPCT <- teamInfo$GD / teamInfo$Shots * 100
teamInfo$GP <- teamInfo$GD/teamInfo$Eg
return(teamInfo)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.