summary.Powder.Hierarchical: Estimates the marginal likelihood and summarizes the samples

Description Usage Arguments Value Examples

Description

Summarizes the samples or estimates the marginal likelihood depending on the type of samples

Usage

1
2
## S3 method for class 'Powder.Hierarchical'
summary(object, options = list(), ...)

Arguments

object

a Powder.Hierarchical object from powder

Value

A tibble. If the Powder.* object was generated via the standard or parallel method from powder then the returned value will be a tibble with the following rows:

TI

log marginal likelihood estimate based on thermodynamic integration

TI Corrected

log marginal likelihood estimate based on modified thermodynamic integration using variance of log likelihood

Harmonic Mean

log marginal likelihood estimate based on harmonic mean

Steppingstone

marginal likelihood esimate based on steppingstone estimator. Because of underflow, this will usually not be meaningful.

Log Steppingstone

log marginal likelihood estimate based on steppingstone estimator.

TI Variance

estimated variance of TI

Steppingstone Variance

estimated variance of Log Steppingstone

If the object was generated via the posterior method from powder then the returned value will be a tibble with the following columns:

mean

the mean of the parameter

95% HDI UB

upper bound of 95% highest density interval

95% HDI LB

lower bound of 95% highest density interval

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
## Not run: 
model = LBA$new()
data('null',package='powder')
#low samples for illustration purposes only
pow.out = powder(data=null, model=model, method='parallel', burnin=10, n.samples=20)
summary(pow.out,options=list(sig.digits=6))

# # A tibble: 7 x 2
# Method                       Value
# <fct>                        <dbl>
# 1 TI                       1822.12
# 2 TI Corrected             1920.92
# 3 Harmonic Mean            2128.10
# 4 Steppingstone            NaN
# 5 Log Steppingstone        2086.49
# 6 TI Variance              4144.37
# 7 Steppingstone Variance   0.58262

pow.out = powder(data=null, model=model, method='posterior',burnin=10,n.samples=20)
summary(pow.out,options=list(sig.digits=3,num.rows=20))

# $group.level
# # A tibble: 12 x 4
# parameter  mean         95% HDI LB         95% HDI UB
# <fct>     <dbl>              <dbl>               <dbl>
# 1 A.mu      0.769            0.0803               1.33
# 2 A.sigma   0.781            0.275                1.25
# 3 b.mu      0.750            0.0459               1.29
# 4 b.sigma   0.724            0.177                1.46
# 5 sve.mu    0.924            0.115                1.41
# 6 sve.sigma 0.687            0.242                1.23
# 7 t0.mu     0.150            0.00687              0.227
# 8 t0.sigma  0.122            0.0488               0.240
# 9 vc.mu     3.22             0.427                4.61
# 10 vc.sigma 1.84             0.731                3.98
# 11 ve.mu    1.57             0.262                3.10
# 12 ve.sigma 1.49             0.278                2.97
#
# $subject.level
# # A tibble: 60 x 5
# parameter subject  mean   95% HDI LB    95% HDI UB
# <fct>     <fct>   <dbl>        <dbl>         <dbl>
# 1 A         1       0.850      0.194          1.61
# 2 b         1       1.14       0.125          1.89
# 3 sve       1       1.05       0.549          1.49
# 4 t0        1       0.141      0.00486        0.271
# 5 vc        1       3.61       2.42           4.59
# 6 ve        1       1.60       0.238          2.84
# 7 A         10      0.943      0.232          1.68
# 8 b         10      0.950      0.340          1.44
# 9 sve       10      1.27       0.866          1.70
# 10 t0       10      0.205      0.0877         0.321
# # ... with 50 more rows

## End(Not run)

jeff324/powder documentation built on June 4, 2019, 3:04 a.m.