Description Usage Arguments Details Value See Also Examples
This function performs successive nonmetric multidimensional scaling analyses on the loci in a BayeScan
object until an adequate stress level is acheived.
1 2 3 4 5 6 7 8 9 | nmds(x, max.stress, min.k, max.k, metric, type, ...)
## S3 method for class 'BayeScanData'
nmds(x, max.stress = 0.1, min.k = 2, max.k = Inf,
metric = "gower", type = "all", ...)
## S3 method for class 'BayeScanAnalysis'
nmds(x, max.stress = 0.1, min.k = 2,
max.k = Inf, metric = "gower", type = "all", ...)
|
x |
|
max.stress |
|
min.k |
|
max.k |
|
metric |
|
type |
|
... |
arguments passed to |
The link[cluster]{daisy}
function is used to calculate distances because it can accomodate missing values.
metaMDS
object.
link[cluster]{daisy}
, link[vegan]{metaMDS}
.
1 2 3 4 5 | # run BayeScan using low number of iterations
dat <- read.BayeScanData(system.file('extdata', 'example_fstat_aflp.dat', package='bayescanr'))
x <- run.BayeScan(dat, threads=1, n=50, thin=1, nbp=10, pilot=10, burn=10)
# generate nmds using minimal iterations and only investigating a few k values
z <- nmds(x, metric='gower', min.k=2, max.k=5, trymax=5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.