#' Generate Sample Mean Vector
#' from the Multivariate Normal Distribution
#' Using the Cholesky Decomposition - Parameter Vector theta Input
#'
#' @details
#' # Dependencies
#' [rmeans_mvn_chol()]
#' [rmvn_chol()]
#'
#' @author Ivan Jacob Agaloos Pesigan
#'
#' @param n Positive integer.
#' Sample size.
#' @inheritParams rmeans_mvn_chol
#' @inheritParams rmvn_chol_of_theta
#'
#' @inherit rmeans_mvn_chol return
#'
#' @examples
#' rmeans_mvn_chol_of_theta(
#' rcap = 5,
#' n = 100,
#' x = c(0, 0, 1, 0.5, 1)
#' )
#' @export
#' @family Multivariate Normal Distribution Functions
#' @keywords multiNorm random mvn
rmeans_mvn_chol_of_theta <- function(rcap,
x,
n,
varnames = NULL,
list = FALSE) {
theta <- mvn_theta_helper(x)
return(
rmeans_mvn_chol(
rcap = rcap,
mu = theta$mu,
sigmacap = theta$sigmacap,
n = n,
varnames = varnames,
list = list
)
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.