Sigmatheta: Model-Implied Variance-Covariance Matrix \boldsymbol{Sigma}...

Description Usage Arguments Details Value Author(s) References See Also

View source: R/Sigmatheta.R

Description

Derives the model-implied variance-covariance matrix \boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right) using the Reticular Action Model (RAM) notation.

Usage

1

Arguments

A

t x t numeric matrix \mathbf{A}_{t \times t}. Asymmetric paths (single-headed arrows), such as regression coefficients and factor loadings.

Omega

t x t numeric matrix \boldsymbol{Ω}_{t \times t}. Symmetric paths (double-headed arrows), such as variances and covariances.

filter

j x t numeric matrix \mathbf{F}_{j \times t}. Filter matrix used to select variables. If filter = NULL, the filter matrix \mathbf{F} is assumed to be a t \times t identity matrix.

Details

The model-implied variance-covariance matrix \boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right) as a function of Reticular Action Model (RAM) matrices is given by

\boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right) = \mathbf{F} ≤ft( \mathbf{I} - \mathbf{A} \right)^{-1} \boldsymbol{Ω} ≤ft[ ≤ft( \mathbf{I} - \mathbf{A} \right)^{-1} \right]^{\mathsf{T}} \mathbf{F}^{\mathsf{T}}

where

Value

Returns the model-implied variance-covariance matrix \boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right) derived from the A, Omega, and filter matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

References

McArdle, J. J. (2013). The development of the RAM rules for latent variable structural equation modeling. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary Psychometrics: A festschrift for Roderick P. McDonald (pp. 225–273). Lawrence Erlbaum Associates.

McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37 (2), 234–251.

See Also

Other SEM notation functions: Omega(), mutheta(), m()


jeksterslab/ram documentation built on Jan. 8, 2021, 12:45 a.m.