Description Usage Arguments Details Value Author(s) References See Also
Derives the matrix of symmetric paths (double-headed arrows) \boldsymbol{Ω} using the Reticular Action Model (RAM) notation.
1 | Omega(A, Sigmatheta)
|
A |
|
Sigmatheta |
|
The matrix of symmetric paths (double-headed arrows) \boldsymbol{Ω} as a function of Reticular Action Model (RAM) matrices is given by
\boldsymbol{Ω} = ≤ft( \mathbf{I} - \mathbf{A} \right) \boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right) ≤ft( \mathbf{I} - \mathbf{A} \right)^{\mathsf{T}}
where
\mathbf{A}_{t \times t} represents asymmetric paths (single-headed arrows), such as regression coefficients and factor loadings,
\boldsymbol{Σ}_{t \times t} represents the model-implied variance-covariance matrix,
\mathbf{I}_{t \times t} represents an identity matrix,
j number of observed variables,
k number of latent variables, and
t number of observed and latent variables, that is j + k .
Returns the matrix of symmetric paths (double-headed arrows)
\boldsymbol{Ω}
derived from the A
and Sigmatheta
matrices.
Ivan Jacob Agaloos Pesigan
McArdle, J. J. (2013). The development of the RAM rules for latent variable structural equation modeling. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary Psychometrics: A festschrift for Roderick P. McDonald (pp. 225–273). Lawrence Erlbaum Associates.
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37 (2), 234–251.
Other SEM notation functions:
Sigmatheta()
,
mutheta()
,
m()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.