#' @author Ivan Jacob Agaloos Pesigan
#'
#' @title Matrix of symmetric paths (double-headed arrows)
#' \eqn{\boldsymbol{\Omega}}
#'
#' @description Derives the matrix of symmetric paths (double-headed arrows)
#' \eqn{\boldsymbol{\Omega}}
#' using the Reticular Action Model (RAM) notation.
#'
#' @details The matrix of symmetric paths (double-headed arrows)
#' \eqn{\boldsymbol{\Omega}}
#' as a function of Reticular Action Model (RAM) matrices
#' is given by
#'
#' \deqn{
#' \boldsymbol{\Omega}
#' =
#' \left( \mathbf{I} - \mathbf{A} \right)
#' \boldsymbol{\Sigma} \left( \boldsymbol{\theta} \right)
#' \left( \mathbf{I} - \mathbf{A} \right)^{\mathsf{T}}
#' }
#'
#' where
#'
#' - \eqn{\mathbf{A}_{t \times t}} represents asymmetric paths
#' (single-headed arrows),
#' such as regression coefficients and factor loadings,
#' - \eqn{\boldsymbol{\Sigma}_{t \times t}} represents
#' the model-implied variance-covariance matrix,
#' - \eqn{\mathbf{I}_{t \times t}} represents an identity matrix,
#' - \eqn{j} number of observed variables,
#' - \eqn{k} number of latent variables, and
#' - \eqn{t} number of observed and latent variables, that is \eqn{j + k} .
#'
#' @family SEM notation functions
#' @keywords matrix ram
#' @inheritParams Sigmatheta
#' @inherit Sigmatheta references
#' @param Sigmatheta `t x t` numeric matrix
#' \eqn{\boldsymbol{\Sigma} \left( \boldsymbol{\theta} \right)}.
#' Model-implied variance-covariance matrix.
#' @return Returns the matrix of symmetric paths (double-headed arrows)
#' \eqn{\boldsymbol{\Omega}}
#' derived from the `A` and `Sigmatheta` matrices.
#' @export
Omega <- function(A,
Sigmatheta) {
# I - A
IminusA <- diag(nrow(A)) - A
# Sigmatheta * (I - A)^{T}
SigmathetaIminusAt <- tcrossprod(
x = Sigmatheta,
y = IminusA
)
return(
# (I - A) * Sigmatheta * (I - A)^{T}
IminusA %*% SigmathetaIminusAt
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.