Description Usage Arguments Author(s) Examples
Generate Nonnormal Data Using the Vale and Maurelli (1983) Approach
1 | vm(n, mu, Sigma, skewness, kurtosis)
|
n |
Integer. Samples size. |
mu |
Numeric vector. Mean vector. |
Sigma |
Numeric matrix. Variance-covariance matrix. |
skewness |
Numeric vector. Skewness. |
kurtosis |
Numeric vector. Kurtosis. |
Ivan Jacob Agaloos Pesigan
1 2 3 4 5 6 7 8 9 10 11 | n <- 100
mu <- c(0, 0)
Sigma <- matrix(data = c(1, 0.50, 0.50, 1), ncol = 2)
skewness <- c(5, 2)
kurtosis <- c(3, 3)
data <- vm(n = n, mu = mu, Sigma = Sigma, skewness = skewness, kurtosis = kurtosis)
colMeans(data)
cov(data)
apply(X = data, MARGIN = 2, FUN = jeksterslabRdist::skew)
apply(X = data, MARGIN = 2, FUN = jeksterslabRdist::kurt)
data
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.