Description Usage Arguments Author(s) See Also Examples
View source: R/vm_sev_complete_unstd_sem_mc.mvn.R
Monte Carlo Method Assuming Multivariate Normal Distribution for Indirect Effect in a Simple Mediation Model for Data Generated Using the Vale and Maurelli (1983) Approach (Skewness = 3, Kurtosis = 21)
1 2 3 4 5 6 7 8 | vm_sev_sem_mc.mvn(
taskid,
R = 20000L,
alphahat,
sehatalphahat,
betahat,
sehatbetahat
)
|
taskid |
Numeric. Task ID. |
R |
Integer. Monte Carlo replications. |
alphahat |
Numeric.
Estimated slope of path from |
sehatalphahat |
Numeric.
Estimated standard error of slope of path from |
betahat |
Numeric.
Estimated slope of path from |
sehatbetahat |
Numeric.
Estimated standard error of slope of path from |
Ivan Jacob Agaloos Pesigan
Other monte carlo method functions:
beta_ols_mc.mvn_pcci_simulation()
,
beta_ols_mc.mvn_pcci_task()
,
beta_ols_mc.mvn_simulation()
,
beta_ols_mc.mvn_task()
,
beta_ols_mc.mvn()
,
exp_ols_mc.mvn_pcci_simulation()
,
exp_ols_mc.mvn_pcci_task()
,
exp_ols_mc.mvn_simulation()
,
exp_ols_mc.mvn_task()
,
exp_ols_mc.mvn()
,
mc.mvn()
,
mc.t()
,
mc.wishart()
,
mvn_mar_10_mc.mvn_pcci_simulation()
,
mvn_mar_10_mc.mvn_pcci_task()
,
mvn_mar_10_mc.mvn_simulation()
,
mvn_mar_10_mc.mvn_task()
,
mvn_mar_10_mc.mvn()
,
mvn_mar_20_mc.mvn_pcci_simulation()
,
mvn_mar_20_mc.mvn_pcci_task()
,
mvn_mar_20_mc.mvn_simulation()
,
mvn_mar_20_mc.mvn_task()
,
mvn_mar_20_mc.mvn()
,
mvn_mar_30_mc.mvn_pcci_simulation()
,
mvn_mar_30_mc.mvn_pcci_task()
,
mvn_mar_30_mc.mvn_simulation()
,
mvn_mar_30_mc.mvn_task()
,
mvn_mar_30_mc.mvn()
,
mvn_mcar_10_mc.mvn_pcci_simulation()
,
mvn_mcar_10_mc.mvn_pcci_task()
,
mvn_mcar_10_mc.mvn_simulation()
,
mvn_mcar_10_mc.mvn_task()
,
mvn_mcar_10_mc.mvn()
,
mvn_mcar_20_mc.mvn_pcci_simulation()
,
mvn_mcar_20_mc.mvn_pcci_task()
,
mvn_mcar_20_mc.mvn_simulation()
,
mvn_mcar_20_mc.mvn_task()
,
mvn_mcar_20_mc.mvn()
,
mvn_mcar_30_mc.mvn_pcci_simulation()
,
mvn_mcar_30_mc.mvn_pcci_task()
,
mvn_mcar_30_mc.mvn_simulation()
,
mvn_mcar_30_mc.mvn_task()
,
mvn_mcar_30_mc.mvn()
,
mvn_mnar_10_mc.mvn_pcci_simulation()
,
mvn_mnar_10_mc.mvn_pcci_task()
,
mvn_mnar_10_mc.mvn_simulation()
,
mvn_mnar_10_mc.mvn_task()
,
mvn_mnar_10_mc.mvn()
,
mvn_mnar_20_mc.mvn_pcci_simulation()
,
mvn_mnar_20_mc.mvn_pcci_task()
,
mvn_mnar_20_mc.mvn_simulation()
,
mvn_mnar_20_mc.mvn_task()
,
mvn_mnar_20_mc.mvn()
,
mvn_mnar_30_mc.mvn_pcci_simulation()
,
mvn_mnar_30_mc.mvn_pcci_task()
,
mvn_mnar_30_mc.mvn_simulation()
,
mvn_mnar_30_mc.mvn_task()
,
mvn_mnar_30_mc.mvn()
,
mvn_ols_mc.mvn_pcci_simulation()
,
mvn_ols_mc.mvn_pcci_task()
,
mvn_ols_mc.mvn_simulation()
,
mvn_ols_mc.mvn_task()
,
mvn_ols_mc.mvn()
,
mvn_sem_mc.mvn_pcci_simulation()
,
mvn_sem_mc.mvn_pcci_task()
,
mvn_sem_mc.mvn_simulation()
,
mvn_sem_mc.mvn_task()
,
mvn_sem_mc.mvn()
,
mvn_std_mc.mvn.delta_pcci_simulation()
,
mvn_std_mc.mvn.delta_pcci_task()
,
mvn_std_mc.mvn.delta_simulation()
,
mvn_std_mc.mvn.delta_task()
,
mvn_std_mc.mvn.delta()
,
mvn_std_mc.mvn.sem_pcci_simulation()
,
mvn_std_mc.mvn.sem_pcci_task()
,
mvn_std_mc.mvn.sem_simulation()
,
mvn_std_mc.mvn.sem_task()
,
mvn_std_mc.mvn.sem()
,
mvn_std_mc.mvn.tb_pcci_simulation()
,
mvn_std_mc.mvn.tb_pcci_task()
,
mvn_std_mc.mvn.tb_simulation()
,
mvn_std_mc.mvn.tb_task()
,
mvn_std_mc.mvn.tb()
,
mvn_std_mc.wishart_pcci_simulation()
,
mvn_std_mc.wishart_pcci_task()
,
mvn_std_mc.wishart_simulation()
,
mvn_std_mc.wishart_task()
,
mvn_std_mc.wishart()
,
vm_mod_ols_mc.mvn_pcci_simulation()
,
vm_mod_ols_mc.mvn_pcci_task()
,
vm_mod_ols_mc.mvn_simulation()
,
vm_mod_ols_mc.mvn_task()
,
vm_mod_ols_mc.mvn()
,
vm_mod_sem_mc.mvn_pcci_simulation()
,
vm_mod_sem_mc.mvn_pcci_task()
,
vm_mod_sem_mc.mvn_simulation()
,
vm_mod_sem_mc.mvn_task()
,
vm_mod_sem_mc.mvn()
,
vm_sev_ols_mc.mvn_pcci_simulation()
,
vm_sev_ols_mc.mvn_pcci_task()
,
vm_sev_ols_mc.mvn_simulation()
,
vm_sev_ols_mc.mvn_task()
,
vm_sev_ols_mc.mvn()
,
vm_sev_sem_mc.mvn_pcci_simulation()
,
vm_sev_sem_mc.mvn_pcci_task()
,
vm_sev_sem_mc.mvn_simulation()
,
vm_sev_sem_mc.mvn_task()
1 2 3 4 5 6 7 8 9 10 11 | taskid <- 1
data <- vm_sev_dat(taskid = taskid)
fit.sem.mlr(data = data, minimal = TRUE)
fit <- vm_sev_fit.sem.mlr(data = data, taskid = taskid)
thetahatstar <- vm_sev_sem_mc.mvn(
taskid = taskid, R = 20000L,
alphahat = fit["alphahat"], sehatalphahat = fit["sehatalphahat"],
betahat = fit["betahat"], sehatbetahat = fit["sehatbetahat"]
)
hist(thetahatstar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.