knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
SparseCCA is a statistical method .... [@wilms2016robust, @mai2019iterative].
Fast permutation test ... [@gandy2014mmctest, @gandy2019r]
| Xmethod
A penalty function for the exposure, i.e. penalty function when regressing Y onto X. Options are "lasso", "alasso","gglasso", and "SGL" (default).
| Ymethod
A penalty function for the outcome, i.e. penalty function when regressing X onto Y. Options are "lasso", "alasso","gglasso", "SGL", and "OLS" (default).
| init.method
Initialization method. Options are "lasso", "OLS", and "SVD" (default).
| X.groupidx
A vector of length \eqn{p} that indicates grouping structure of exposure \eqn{X}.
| standardize
A logical flag for exposure \eqn{X} and outcome \eqn{Y} standardization, prior to fitting the model.
| max.iter
A maximum number of iterations of SparseCCA. The default is $100$.
| conv
A tolerance value for convergence \eqn{epsilon} of SparseCCA. The default is $10e-2$.
| maxnum
A maximal total number of permutations across all the clusters.
| maxB
A maximal number of permutations for a single cluster.
| permute.tmp.filepath
Filepath to save intermittent permutation results.
| permute
A logical flag for whether to run permutation test or not.
| nthread
A number of threads to parallelize permutation test and implementation of SparseCCA across all the clusters.
| FDR.thresh
FDR threshold. The default is $0.05$.
As list of clusters are provided and partial residuals are computed, AclustsCCA
will only run SparseCCA on each cluster identified by A-clustering.
load("clusters.list.RData") load("partial.residual.RData") AclustsCCA.result <- AclustsCCA(X=X.resid, Y=Y.resid, clusters.list=clusters.list, # parameters for SparseCCA Xmethod=Xmethod, Ymethod=Ymethod, X.groupidx=X.groupidx, # parameters for permutation test for AclustsCCA maxB=maxB, permute=TRUE, nthread=nthread) summary.AclustsCCA(AclustsCCA.result)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.