rm(list = ls())
library(GibbsFlow)
library(tictoc)
library(ggplot2)
# problem specification
nobservations <- 100
nrepetitions <- 1
dimension <- nobservations + 2
sigma_e_sq <- 0.00434
# simulate dataset
# true_sigma_theta_sq <- 0.01
# true_mu <- 0
# true_theta <- true_mu + sqrt(true_sigma_theta_sq) * rnorm(nobservations)
# dataset <- matrix(nrow = nobservations, ncol = nrepetitions)
# for (i in 1:nobservations){
# for (j in 1:nrepetitions){
# dataset[i, j] <- true_theta[i] + sqrt(sigma_e_sq) * rnorm(1)
# }
# }
# dataset_rowsums <- rowSums(dataset)
# load dataset
load("inst/variancecomponents/simulated/dataset_102.RData")
dataset_rowsums <- rowSums(dataset)
# prior
prior <- list()
prior$logdensity <- function(x) as.numeric(varcomp_artificial_logprior(x, dimension))
prior$gradlogdensity <- function(x) varcomp_gradlogprior_artificial(x, dimension)
prior$rinit <- function(n) varcomp_sample_artificial_prior(n, dimension)
# likelihood
likelihood <- list()
likelihood$logdensity <- function(x) as.numeric(varcomp_logprior(x, dimension) +
varcomp_loglikelihood(x, dataset) -
varcomp_artificial_logprior(x, dimension))
likelihood$gradlogdensity <- function(x) varcomp_gradlogprior(x, dimension) +
varcomp_gradloglikelihood(x, dataset_rowsums, dimension, nrepetitions) -
varcomp_gradlogprior_artificial(x, dimension)
compute_gibbsflow <- function(stepsize, lambda, lambda_next, derivative_lambda, x, logdensity) varcomp_gibbsflow(stepsize, lambda, lambda_next, derivative_lambda, x,
logdensity, dataset_rowsums, dimension)
# smc settings
nparticles <- 2^7
nsteps <- 500
timegrid <- seq(0, 1, length.out = nsteps)
exponent <- 2
lambda <- timegrid^exponent
derivative_lambda <- exponent * timegrid^(exponent - 1)
# mcmc settings
mcmc <- list()
mcmc$choice <- "hmc"
mcmc$parameters$stepsize <- 0.0075
mcmc$parameters$nsteps <- 10
mcmc$nmoves <- 1
# repeat gibbsflow ais/smc
nrepeats <- 100
ess <- matrix(nrow = nrepeats, ncol = nsteps)
log_normconst <- rep(0, nrepeats)
tic()
for (irepeat in 1:nrepeats){
cat("Repeat:", irepeat, "/", nrepeats, "\n")
smc <- run_gibbsflow_ais(prior, likelihood, nparticles, timegrid, lambda, derivative_lambda, compute_gibbsflow, mcmc)
ess[irepeat, ] <- smc$ess * 100 / nparticles
log_normconst[irepeat] <- smc$log_normconst[nsteps]
}
toc()
save(ess, log_normconst, file = "inst/variancecomponents/simulated/results/repeat_gibbsflow_ais_102.RData", safe = F)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.