| Lrnr_bayesglm | R Documentation |
This learner provides fitting procedures for bayesian generalized linear
models (GLMs) from ar using bayesglm.fit. The GLMs
fitted in this way can incorporate independent normal, t, or Cauchy prior
distribution for the coefficients.
An R6Class object inheriting from
Lrnr_base.
A learner object inheriting from Lrnr_base with
methods for training and prediction. For a full list of learner
functionality, see the complete documentation of Lrnr_base.
intercept = TRUE: A logical specifying whether an intercept
term should be included in the fitted null model.
...: Other parameters passed to bayesglm.fit.
See it's documentation for details.
Other Learners:
Custom_chain,
Lrnr_HarmonicReg,
Lrnr_arima,
Lrnr_bartMachine,
Lrnr_base,
Lrnr_caret,
Lrnr_cv_selector,
Lrnr_cv,
Lrnr_dbarts,
Lrnr_define_interactions,
Lrnr_density_discretize,
Lrnr_density_hse,
Lrnr_density_semiparametric,
Lrnr_earth,
Lrnr_expSmooth,
Lrnr_gam,
Lrnr_ga,
Lrnr_gbm,
Lrnr_glm_fast,
Lrnr_glm_semiparametric,
Lrnr_glmnet,
Lrnr_glmtree,
Lrnr_glm,
Lrnr_grfcate,
Lrnr_grf,
Lrnr_gru_keras,
Lrnr_gts,
Lrnr_h2o_grid,
Lrnr_hal9001,
Lrnr_haldensify,
Lrnr_hts,
Lrnr_independent_binomial,
Lrnr_lightgbm,
Lrnr_lstm_keras,
Lrnr_mean,
Lrnr_multiple_ts,
Lrnr_multivariate,
Lrnr_nnet,
Lrnr_nnls,
Lrnr_optim,
Lrnr_pca,
Lrnr_pkg_SuperLearner,
Lrnr_polspline,
Lrnr_pooled_hazards,
Lrnr_randomForest,
Lrnr_ranger,
Lrnr_revere_task,
Lrnr_rpart,
Lrnr_rugarch,
Lrnr_screener_augment,
Lrnr_screener_coefs,
Lrnr_screener_correlation,
Lrnr_screener_importance,
Lrnr_sl,
Lrnr_solnp_density,
Lrnr_solnp,
Lrnr_stratified,
Lrnr_subset_covariates,
Lrnr_svm,
Lrnr_tsDyn,
Lrnr_ts_weights,
Lrnr_xgboost,
Pipeline,
Stack,
define_h2o_X(),
undocumented_learner
data(cpp_imputed)
covars <- c(
"apgar1", "apgar5", "parity", "gagebrth", "mage", "meducyrs", "sexn"
)
outcome <- "haz"
task <- sl3_Task$new(cpp_imputed,
covariates = covars,
outcome = outcome
)
# fit and predict from a bayesian GLM
bayesglm_lrnr <- make_learner(Lrnr_bayesglm)
bayesglm_fit <- bayesglm_lrnr$train(task)
bayesglm_preds <- bayesglm_fit$predict(task)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.