View source: R/process_missing.R
| process_missing | R Documentation |
Process data to account for missingness in preparation for TMLE
process_missing(
data,
node_list,
complete_nodes = c("A", "Y"),
impute_nodes = NULL,
max_p_missing = 0.5
)
data, |
|
node_list, |
|
complete_nodes, |
|
impute_nodes, |
|
max_p_missing, |
|
Rows where there is missingness in any of the complete_nodes will be
dropped. Then, missingness will be median-imputed for the variables in the impute_nodes.
Indicator variables of missingness will be generated for these nodes.
Then covariates will be processed as follows:
any covariate with more than max_p_missing missingness will be dropped
indicators of missingness will be generated
missing values will be median-imputed
list containing the following elements:
data, the updated dataset
node_list, the updated list of nodes
n_dropped, the number of observations dropped
dropped_cols, the variables dropped due to excessive missingness
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.