#' Determine zones for the Double Connected scan test
#'
#' \code{dc.zones} determines the zones for the Double
#' Connected scan test (\code{\link{dc.test}}). The
#' function returns the zones, as well as the associated
#' test statistic, cases in each zone, the expected number
#' of cases in each zone, and the population in each zone.
#'
#' Every zone considered must have a total population less
#' than \code{ubpop * sum(pop)}. Additionally, the maximum
#' intercentroid distance for the regions within a zone must
#' be no more than \code{ubd * the maximum intercentroid
#' distance across all regions}.
#' @inheritParams dmst.test
#' @inheritParams mst.all
#' @inheritParams flex.zones
#' @return Returns a list with elements: \item{zones}{A list
#' contained the location ids of each potential cluster.}
#' \item{loglikrat}{The loglikelihood ratio for each zone
#' (i.e., the log of the test statistic).}
#' \item{cases}{The observed number of cases in each
#' zone.} \item{expected}{The expected number of cases
#' each zone.} \item{pop}{The total population in each
#' zone.}
#' @author Joshua French
#' @references Costa, M.A. and Assuncao, R.M. and Kulldorff,
#' M. (2012) Constrained spanning tree algorithms for
#' irregularly-shaped spatial clustering, Computational
#' Statistics & Data Analysis, 56(6), 1771-1783.
#' <doi:10.1016/j.csda.2011.11.001>
#' @export
#' @examples
#' data(nydf)
#' data(nyw)
#' coords <- as.matrix(nydf[, c("longitude", "latitude")])
#' # find zone with max statistic starting from each individual region
#' all_zones <- dc.zones(coords,
#' cases = floor(nydf$cases),
#' nydf$pop, w = nyw, ubpop = 0.25,
#' ubd = .25, longlat = TRUE
#' )
dc.zones <- function(coords, cases, pop, w,
ex = sum(cases) / sum(pop) * pop,
ubpop = 0.5, ubd = 1, longlat = FALSE,
cl = NULL, progress = TRUE) {
# sanity checking
arg_check_dmst_zones(
coords = coords, cases = cases,
pop = pop, w = w, ex = ex,
ubpop = ubpop, ubd = ubd,
longlat = longlat, type = "all",
progress = progress
)
# setup various arguments and such
ty <- sum(cases) # total number of cases
# intercentroid distances
d <- gedist(as.matrix(coords), longlat = longlat)
# upperbound for population in zone
max_pop <- ubpop * sum(pop)
# find all neighbors from each starting zone within distance upperbound
nn <- nndist(d, ubd)
out <- mst.all(
neighbors = nn, cases = cases, pop = pop,
w = w, ex = ex, ty = ty, max_pop = max_pop,
type = "all", nlinks = "two", early = TRUE,
cl = cl, progress = progress
)
# return results in a list
prep.mst(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.