psis | R Documentation |
Implementation of Pareto smoothed importance sampling (PSIS), a method for stabilizing importance ratios. The version of PSIS implemented here corresponds to the algorithm presented in Vehtari, Simpson, Gelman, Yao, and Gabry (2024). For PSIS diagnostics see the pareto-k-diagnostic page.
psis(log_ratios, ...)
## S3 method for class 'array'
psis(log_ratios, ..., r_eff = 1, cores = getOption("mc.cores", 1))
## S3 method for class 'matrix'
psis(log_ratios, ..., r_eff = 1, cores = getOption("mc.cores", 1))
## Default S3 method:
psis(log_ratios, ..., r_eff = 1)
is.psis(x)
is.sis(x)
is.tis(x)
log_ratios |
An array, matrix, or vector of importance ratios on the log scale (for PSIS-LOO these are negative log-likelihood values). See the Methods (by class) section below for a detailed description of how to specify the inputs for each method. |
... |
Arguments passed on to the various methods. |
r_eff |
Vector of relative effective sample size estimates containing
one element per observation. The values provided should be the relative
effective sample sizes of |
cores |
The number of cores to use for parallelization. This defaults to
the option
|
x |
For |
The psis()
methods return an object of class "psis"
,
which is a named list with the following components:
log_weights
Vector or matrix of smoothed (and truncated) but unnormalized log
weights. To get normalized weights use the
weights()
method provided for objects of
class "psis"
.
diagnostics
A named list containing two vectors:
pareto_k
: Estimates of the shape parameter k
of the
generalized Pareto distribution. See the pareto-k-diagnostic
page for details.
n_eff
: PSIS effective sample size estimates.
Objects of class "psis"
also have the following attributes:
norm_const_log
Vector of precomputed values of colLogSumExps(log_weights)
that are
used internally by the weights
method to normalize the log weights.
tail_len
Vector of tail lengths used for fitting the generalized Pareto distribution.
r_eff
If specified, the user's r_eff
argument.
dims
Integer vector of length 2 containing S
(posterior sample size)
and N
(number of observations).
method
Method used for importance sampling, here psis
.
psis(array)
: An I
by C
by N
array, where I
is the number of MCMC iterations per chain, C
is the number of
chains, and N
is the number of data points.
psis(matrix)
: An S
by N
matrix, where S
is the size
of the posterior sample (with all chains merged) and N
is the number
of data points.
psis(default)
: A vector of length S
(posterior sample size).
Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432. doi:10.1007/s11222-016-9696-4 (journal version, preprint arXiv:1507.04544).
Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance sampling. Journal of Machine Learning Research, 25(72):1-58. PDF
loo()
for approximate LOO-CV using PSIS.
pareto-k-diagnostic for PSIS diagnostics.
The loo package vignettes for demonstrations.
The FAQ page on the loo website for answers to frequently asked questions.
log_ratios <- -1 * example_loglik_array()
r_eff <- relative_eff(exp(-log_ratios))
psis_result <- psis(log_ratios, r_eff = r_eff)
str(psis_result)
plot(psis_result)
# extract smoothed weights
lw <- weights(psis_result) # default args are log=TRUE, normalize=TRUE
ulw <- weights(psis_result, normalize=FALSE) # unnormalized log-weights
w <- weights(psis_result, log=FALSE) # normalized weights (not log-weights)
uw <- weights(psis_result, log=FALSE, normalize = FALSE) # unnormalized weights
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.