rmatdata: Random matrix-variate data

Description Usage Arguments Value See Also Examples

Description

The function provide a random number generator for the Matrix-variate data.

Usage

1
rmatdata(n, mean = matrix(0, nrow = nrow(sigmaS), ncol = ncol(sigmaT)), sigmaS, sigmaT, method = c("eigen", "svd", "chol"), distribution = c("uniform", "t"), df)

Arguments

n

number of observations.

mean

mean matrix, default is matrix(0, nrow=nrow(sigmaS), ncol=ncol(sigmaT)).

sigmaS

covariance matrix between rows.

sigmaT

covariance matrix between columns.

method

string specifying the matrix decomposition used todetermine the matrix root of sigmaS and sigmaT. Possible methods are eigenvalue decomposition ("eigen", default), singular value decomposition ("svd"), and Cholesky decomposition ("chol").

distribution

the distribution used to generate random number. uniform distribution or t distribution.

df

runif(-df,df) used if distribution is "uniform". degrees of freedom used if distribution is "t".

Value

returns a p*q*n array if n > 1. returns a p*q matrix if n = 1.

See Also

rmatnorm

Examples

1
2
3
4
5
p <- 5; q <- 6; n <- 10
set.seed(1212)
s1 <- 0.5^abs(outer(1:p,1:p,"-"))
s2 <- 0.4^abs(outer(1:q,1:q,"-"))
x <- rmatdata(n,mean=matrix(1,p,q),sigmaS=s1,sigmaT=s2,distribution="t", df=3)

jijiadong/MVDN documentation built on Sept. 6, 2020, 7:15 p.m.