Description Usage Arguments Details Value Author(s) References See Also Examples
Uses backward and forward linkages
to identify key sectors in the system. Can calculate total and direct linkages. If the data is multiregional, intraregional and interregional linkages can be calculated. Can also be used on a specified subset of all regions.
1 2 | key.sector(io, ES = NULL, crit = 1, regions = "all", sectors = "all",
type = c("direct"), intra.inter = FALSE)
|
io |
An object of class |
ES |
An object of class |
crit |
Integer. The value to compare linkages above or below to classify sectors. Default is 1. |
regions |
Character or Integer. Specific regions to be used. Can either be a character that exactly matches the name of the region in |
sectors |
Character or Integer. Specific sectors to be used. Can either be a character that exactly matches the name of the sector in |
type |
Character. Identifying the type of backward and forward linkages to be calculated. Options are |
intra.inter |
Logical. Only applies to multiregional systems. Determines whether or not to calculate intraregional and interregional backward and forward linkages in addition to aggregate linkages. |
Uses the (various) specified backward and forward linkages
to calculate a key to identify dependence using the specified critical value.
I
BL < crit, FL < crit - Generally independent
II
BL < crit, FL > crit - Dependent on interindustry demand
III
BL > crit, FL > crit - Generally dependent
IV
BL > crit, FL < crit - Dependent on interindustry supply
If there is only one region, key sector binds to the output from linkages
to make a table. Otherwise, it produces a list of key sector codes for each country using the names of regions provided. See Examples for more details.
John J. P. Wade, Ignacio Sarmiento-Barbieri
Blair, P.D. and Miller, R.E. (2009). "Input-Output Analysis: Foundations and Extensions". Cambridge University Press
Nazara, Suahasil & Guo, Dong & Hewings, Geoffrey J.D., & Dridi, Chokri, 2003. "PyIO. Input-Output Analysis with Python". REAL Discussion Paper 03-t-23. University of Illinois at Urbana-Champaign. (http://www.real.illinois.edu/d-paper/03/03-t-23.pdf)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | data(toy.IO)
class(toy.IO)
key1 <- key.sector(toy.IO)
key1$Narnia
data(toy.ES)
class(toy.ES)
key2 <- key.sector(toy.IO, toy.ES)
key2
# A more detailed example
# Using critical value of 2 because this is randomly generated data and better
# illustrates functionality
key3 <- key.sector(toy.IO, intra.inter = TRUE, type = c("direct"), crit = 2)
key3
key4 <- key.sector(toy.IO, regions = c(1:2), sectors = c(1:3,5))
key4
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.