rocof | R Documentation |
rocof
calculates the sample nonparametric estimate of the
intensity function (i.e. rate of occurrence of failures (ROCOF), or failure rate)
at time t. The inverse of this would be the sample nonparametric
mean time between failure at time t. This function is useful for the
creation of Duane Plots as shown in the examples section below.
rocof(t, by = NULL)
t |
A list of failure time vectors. Each vector should indicate a different system, i.e. if you have multiple systems each systems' failure times should be in it's own vector. |
by |
If providing a list of length > 1 this can be a vector that defines a name for each element of the list so as to return by system rocof and mtbf estimates. |
The output will be a data.frame
containing,
the 'by' variable (which specifies the system or process the failuresm
are attributable to, if supplied in the list name), the failure times ("t"),
and the corresponding nonparametric estimates for the instantaneous
rocof and mtbf.
power_law_process
, power_law_intensity
,
power_law_mcf
, mcf
, trend_test
,
ttt
, common_beta
data(amsaa)
# Three systems failure times.
(df <- rocof(t = split(amsaa$Time, amsaa$System)))
ggplot(df,
aes(
x = t,
y = rocof)) +
scale_x_log10() +
scale_y_log10() +
geom_smooth(method='lm', se = FALSE) +
geom_point() +
labs(y = "Cumulative Failure Rate") +
scale_colour_manual(values = cbPalette) +
ggtitle("Duane Plot")
ggplot(df,
aes(
x = t,
y = mtbf)) +
scale_x_log10() +
scale_y_log10() +
geom_smooth(method='lm', se = FALSE) +
geom_point() +
labs(y = "Cumulative MTBF") +
scale_colour_manual(values = cbPalette) +
ggtitle("Duane Plot")
rm(list = c("amsaa", "df"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.