Description Usage Arguments Examples
View source: R/dsdive.obstx.matrix_interpolator.R
Given a range of model parameters, this function will compute the
probability transition matrices for all combinations of a Continuous time
Markov chain (CTMC) that is observed once, and then again at a time of
tstep
units of time later. Then, thin plate spline interpolating
functions will be built to allow probability transition matrix entries to
be approximated at different values of the input parameters.
1 2 3 4 5 6 7 8 9 10 | dsdive.obstx.matrix_interpolator(
depth.bins,
beta.seq,
lambda.seq,
s0,
tstep.seq,
m,
verbose = FALSE,
cl = NULL
)
|
depth.bins |
n x 2 Matrix that defines the depth bins. The first column defines the depth at the center of each depth bin, and the second column defines the half-width of each bin. |
beta.seq |
the range of depth bin transition model parameters |
lambda.seq |
the range of depth bin transition rate model parameters |
s0 |
the stage for which to compute the transition matrix |
tstep.seq |
Range of times between observations of the CTMC |
m |
Smoothing polynomial degree; this is the |
verbose |
|
cl |
cluster over which computations can be parallelized |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | data('dive.sim')
attach(dive.sim)
# support for descent directional preferences
beta.seq = seq(.5, 1, length.out = 7)
beta.seq[length(beta.seq)] = .999
# support for descent speeds
lambda.seq = seq(.1, 2, length.out = 7)
# support for timesteps
tstep.seq = seq(0, 300, by = 100)
# build interpolating function
interpolator = dsdive.obstx.matrix_interpolator(
depth.bins = depth.bins, beta.seq = beta.seq, lambda.seq = lambda.seq,
s0 = 1, tstep.seq = tstep.seq, m = 3, verbose = TRUE)
interpolator(beta = .8, lambda = 1, tstep = 300, i = 1, j = 4)
# cl = makeCluster(spec = 3, type = 'SOCK')
# clusterEvalQ(cl, library(dsdive))
#
# interpolator = dsdive.obstx.matrix_interpolator(
# depth.bins = depth.bins, beta.seq = beta.seq, lambda.seq = lambda.seq,
# s0 = 1, tstep.seq = tstep.seq, m = 3, verbose = TRUE, cl = cl)
#
# stopCluster(cl = cl)
detach(dive.sim)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.