Description Usage Arguments Examples
View source: R/dsdive.obstxmat.cov.R
Given model parameters, this function will compute the probability transition
matrix for a Continuous time Markov chain (CTMC) that is observed once, and
then again at a time of tstep
units of time later. If
include.raw==TRUE
, then raw components of the probability transition
matrix will be returned so that the transition matrix can be computed for
arbitrary timesteps.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | dsdive.obstxmat.cov(
pi.designs,
lambda.designs,
beta1,
beta2,
alpha1,
alpha2,
alpha3,
s0,
ind,
tstep,
include.raw,
depth.bins,
delta
)
|
pi.designs |
list of design matrices for the diving preference parameters by stage. |
lambda.designs |
list of design matrices for the diving speed parameters by stage. |
beta1 |
coefficient values for linear model for logit(pi^(1)). |
beta2 |
coefficient values for linear model for logit(pi^(3)). |
alpha1 |
coefficient values for linear model for log(lambda^(1)). |
alpha2 |
coefficient values for linear model for log(lambda^(2)). |
alpha3 |
coefficient values for linear model for log(lambda^(3)). |
s0 |
stage for which the transition matrix should be computed |
ind |
transition matrix is unique for each dive. The parameter
|
tstep |
Time between observations of the CTMC |
include.raw |
|
depth.bins |
n x 2 Matrix that defines the depth bins. The first column defines the depth at the center of each depth bin, and the second column defines the half-width of each bin. |
delta |
If |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | data('dive.sim')
attach(dive.sim)
attach(dive.sim$params)
beta1 = c(0, 0)
beta2 = c(0, 0)
alpha1 = c(0, 0)
alpha2 = c(0, 0)
alpha3 = c(0, 0)
covs = data.frame(x1 = c(.5, 1), x2 = c(0, .3))
pi.formula = ~x1
lambda.formula = ~x1:x2
#
# expand covariate design matrices
#
if(!inherits(pi.formula, 'list')) {
pi.formula = list(pi.formula, pi.formula)
}
if(!inherits(lambda.formula, 'list')) {
lambda.formula = list(lambda.formula, lambda.formula, lambda.formula)
}
pi.designs = lapply(pi.formula, function(f) model.matrix(f, covs))
lambda.designs = lapply(lambda.formula, function(f) model.matrix(f, covs))
#
# build transition matrix
#
m = dsdive.obstxmat.cov(
pi.designs = pi.designs, lambda.designs = lambda.designs, beta1 = beta1,
beta2 = beta2, alpha1 = alpha1, alpha2 = alpha2, alpha3 = alpha3, s0 = 1,
ind = 1, tstep = 300, include.raw = TRUE, depth.bins = depth.bins,
delta = 1e-10)
detach(dive.sim$params)
detach(dive.sim)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.