#' Filter the rss to the first third of the rss confidence interval, removing any duplicates in the parameters
#'
#' \code{rss_filter} Computes the summary distribution for the residual sum of squares and then filters out the unique values. Has to work on a nested data frame
#'
#' @param input_results A nested data frame
#'
#' @return A filtered nested data frame
#' @examples
#'
#' # To be filled in later
#' @export
rss_filter <- function(input_results) {
rss_iterations <- input_results %>%
group_by(Year,depth,model) %>%
nest() %>%
mutate(fivenum = map(.x=data,.f=~(summary(.x$rss) %>% enframe()) ) ) %>% # Now we compute the summary stats
mutate(rss_filter = map2(.x=data,
.y=fivenum,
.f=~(filter(.x,between(rss,.y$value[2],.y$value[5])) ) ) )
rss_unique <- rss_iterations %>%
mutate(rss_filter = map(rss_filter,.f=~(unnest(.x,cols=params) %>%
pivot_wider(names_from="name",values_from="value") %>%
mutate(across(.cols=!c("rss","iteration"),.fns=~round(.x,5))) %>%
distinct(across(.cols=!c("rss","iteration")),.keep_all=TRUE) %>%
pivot_longer(cols = !c("rss","iteration"),names_to="name",values_to="value") %>%
nest(params=c(name,value))) ) )
return(rss_unique)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.