#' Simulate population dynamics for sandhills cranes
#'
#' \code{sandhillsEnvironmental} is modified from Logan and Wolesesnky "Mathematical Methods in Biology." Create a sandhill crane model of discrete dynamics x(t+1)=r*x(t), as detailed on page 311. The parameter r = 1+b-d, where b is the birth rate, d is the death rate. We modify r based on the stated flood rate potential. In normal years, the value of r is 1.4. In Catastrophic years the net growth rate is lowered so r=0.575.
#'
#' @param initialPopulation Initial population size
#' @param floodRate The frequency of flooding. (1/25 = one in 25 years)
#' @param nYears the number of years we run our population
#' @param nSimulations Number of simulations we try
#'
#' @return A spaghetti plot and ensemble average plot of population dynamics
#' @examples
#'
#' sandhillsEnvironmental(100,1/25,20,10)
#' @import ggplot2
#' @import dplyr
#' @import tidyr
#' @export
sandhillsEnvironmental <- function(initialPopulation,floodRate,nYears,nSimulations) {
### Set up vector of results
sandhills=array(0,dim=c(nYears,nSimulations));
sandhills[1,]=initialPopulation; # Set the first index equal to the initial amount
### Loop through the each years and simulation, varying the birth and death rate
for (j in 1:nSimulations) {
for (i in 2:nYears) {
if (runif(1)< floodRate) {r=0.575} # Catastrophic years the net growth rate is lowered
else {r=1.4} # Normal years the net growth rate is 1.4
sandhills[i,j]=r*sandhills[i-1,j]; ### Update current year from last years population x[t]=r*x[t], r = 1-b-d
}
}
### Now loop through and do
quantVals = c(0.025,0.5,0.975); # The CI we want to utilize
# Now loop through everything
outCI=array(dim = c(length(quantVals),nYears));
for (i in 1:nYears) {
outCI[,i] = quantile(sandhills[i,],quantVals);
}
#### Make a plot of the solution
# Plot your results
### Spaghetti plot
total_data=data.frame(steps=0:(nYears-1),sandhills =sandhills) %>%
gather(key=simulation,value=population,2:(nSimulations+1))
spaghettiPlot=ggplot(total_data,aes(x=steps,y=population,group=simulation))+
geom_line() +
theme(plot.title = element_text(size=20),
axis.title.x=element_text(size=20),
axis.text.x=element_text(size=15),
axis.text.y=element_text(size=15),
axis.title.y=element_text(size=20)) +
labs(x = "Years",y = "Sandhill Crane Population",title="Spaghetti Plot")
print(spaghettiPlot)
data=data.frame(years=0:(nYears-1),
F =outCI[2,],
L =outCI[1,],
U =outCI[3,])
ensemblePlot=ggplot(data,aes(x=years,y=F)) +
geom_ribbon(aes(ymin=L,ymax=U),alpha=0.2,colour='grey') +
geom_line(size=1.5) +
theme(plot.title = element_text(size=20),
axis.title.x=element_text(size=20),
axis.text.x=element_text(size=15),
axis.text.y=element_text(size=15),
axis.title.y=element_text(size=20)) +
labs(x = "Years",y = "Sandhill Crane Population",title="Ensemble Average Plot")
print(ensemblePlot)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.