pcmPerformance: PCM runout distance performance

Description Usage Arguments Value Examples

View source: R/pcm_performance.R

Description

Computes the error for runout distances simuluated using the random walk and PCM model components of the GPP tool in SAGA-GIS.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
pcmPerformance(
  dem,
  slide_plys,
  slide_src,
  slide_id = 1,
  rw_slp = 33,
  rw_ex = 3,
  rw_per = 2,
  pcm_mu = 0.3,
  pcm_md = 75,
  buffer_ext = 500,
  buffer_source = 50,
  gpp_iter = 1000,
  predict_threshold = 0.5,
  plot_eval = FALSE,
  return_features = FALSE,
  saga_lib
)

Arguments

dem

A DEM as a RasterLayer object

slide_plys

Runout tracks as a SpatialPolygonsDataFrame

slide_src

Source points as a SpatialPointsDataFrame or source areas as a SpatialPolygonsDataFrame

slide_id

Selects a single runout polygon from slide_plys by row

rw_slp

Random walk slope threshold - below lateral spreading is modelled

rw_ex

Random walk exponent controlling lateral spread

rw_per

Random walk persistence factor to weight flow direction consistency

pcm_mu

PCM model sliding friction coefficient

pcm_md

PCM model mass-to-drag ratio (m)

buffer_ext

(Optional) Defines buffer distance (in meters) around runout polygon to crop source DEM. This helps to reduce computational time

buffer_source

(Optional) Can define a buffer distance (in meters) to extend source point to a source area

gpp_iter

Number of model iterations

predict_threshold

A cutoff value to define what quantile of simulated runout frequencies is the predicted runout.

plot_eval

logical. If TRUE will plot simulated runout and runout polygon

return_features

logical. If TRUE, returned list will include GPP input and output data, in addition to a list of error measures.

saga_lib

The initiated SAGA-GIS geoprocessor object

Value

A list of runout distance performance measures.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
## Not run: 
# Initialize a saga object
saga <- Rsagacmd::saga_gis()

# Load elevation model (DEM)
dem <- raster(system.file("extdata/elev_12_5m.tif", package="runout.opt"))

# Load runout polygons and source points
runout_plys <- rgdal::readOGR(system.file("extdata/dflow_runout_ply.shp", package="runout.opt"))
source_pnts <- rgdal::readOGR(system.file("extdata/dflow_source_pnt.shp", package="runout.opt"))

# Run GPP PCM model for a rounout polygon
pcm <- pcmPerformance(dem, slide_plys = runout_plys[1,], slide_src = source_pnts,
  rw_slp = 40, rw_ex = 3, rw_per = 1.5,
  pcm_mu = 0.15, pcm_md = 120,
  gpp_iter = 1000, buffer_ext = 500, buffer_source = 50,
  plot_eval = TRUE, return_features = TRUE)

# Runout distance relative error
pcm$length.relerr

# Plot GPP PCM runout modelling ouputs
gpp_output <- stack(pcm$gpp.parea, pcm$gpp.stop, pcm$gpp.maxvel)
names(gpp_output) <- c("Process_area", "Stop_positions", "Max_velocity")
plot(gpp_output)


## End(Not run)

jngtz/runout.opt documentation built on Sept. 8, 2021, 2:15 p.m.