Description Usage Arguments Value Examples
View source: R/pcm_performance.R
Computes the error for runout distances simuluated using the random walk and PCM model components of the GPP tool in SAGA-GIS.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | pcmPerformance(
dem,
slide_plys,
slide_src,
slide_id = 1,
rw_slp = 33,
rw_ex = 3,
rw_per = 2,
pcm_mu = 0.3,
pcm_md = 75,
buffer_ext = 500,
buffer_source = 50,
gpp_iter = 1000,
predict_threshold = 0.5,
plot_eval = FALSE,
return_features = FALSE,
saga_lib
)
|
dem |
A DEM as a RasterLayer object |
slide_plys |
Runout tracks as a SpatialPolygonsDataFrame |
slide_src |
Source points as a SpatialPointsDataFrame or source areas as a SpatialPolygonsDataFrame |
slide_id |
Selects a single runout polygon from slide_plys by row |
rw_slp |
Random walk slope threshold - below lateral spreading is modelled |
rw_ex |
Random walk exponent controlling lateral spread |
rw_per |
Random walk persistence factor to weight flow direction consistency |
pcm_mu |
PCM model sliding friction coefficient |
pcm_md |
PCM model mass-to-drag ratio (m) |
buffer_ext |
(Optional) Defines buffer distance (in meters) around runout polygon to crop source DEM. This helps to reduce computational time |
buffer_source |
(Optional) Can define a buffer distance (in meters) to extend source point to a source area |
gpp_iter |
Number of model iterations |
predict_threshold |
A cutoff value to define what quantile of simulated runout frequencies is the predicted runout. |
plot_eval |
logical. If TRUE will plot simulated runout and runout polygon |
return_features |
logical. If TRUE, returned list will include GPP input and output data, in addition to a list of error measures. |
saga_lib |
The initiated SAGA-GIS geoprocessor object |
A list of runout distance performance measures.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | ## Not run:
# Initialize a saga object
saga <- Rsagacmd::saga_gis()
# Load elevation model (DEM)
dem <- raster(system.file("extdata/elev_12_5m.tif", package="runout.opt"))
# Load runout polygons and source points
runout_plys <- rgdal::readOGR(system.file("extdata/dflow_runout_ply.shp", package="runout.opt"))
source_pnts <- rgdal::readOGR(system.file("extdata/dflow_source_pnt.shp", package="runout.opt"))
# Run GPP PCM model for a rounout polygon
pcm <- pcmPerformance(dem, slide_plys = runout_plys[1,], slide_src = source_pnts,
rw_slp = 40, rw_ex = 3, rw_per = 1.5,
pcm_mu = 0.15, pcm_md = 120,
gpp_iter = 1000, buffer_ext = 500, buffer_source = 50,
plot_eval = TRUE, return_features = TRUE)
# Runout distance relative error
pcm$length.relerr
# Plot GPP PCM runout modelling ouputs
gpp_output <- stack(pcm$gpp.parea, pcm$gpp.stop, pcm$gpp.maxvel)
names(gpp_output) <- c("Process_area", "Stop_positions", "Max_velocity")
plot(gpp_output)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.