map_ecm: map_ecm: Constructs an Exposure Continuum Map using Kohonen's...

Description Usage Arguments Value References

Description

This function applies Kohonen's Self-Organizing Map algorithm in order to construct a low-dimensional mapping of the data.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
map_ecm(
  trn_dat,
  xdim = 5,
  ydim = 4,
  maptopo = NULL,
  itermax = NULL,
  inits = NULL,
  distmet = NULL,
  lmode = NULL
)

Arguments

trn_dat

is a data object to map. Should be a numerical or factor based data matrix.

xdim

is x-dimension of the SOM

ydim

is y-dimension of the SOM

maptopo

specifies the topology of the SOM grid as either "rectangular" or "hexagonal"

itermax

specifies the number if learning iterations

inits

specifies if optimal initialization values are to be used.

distmet

specifies dissimilarity metric. Current options include "sumofsquares", "euclidean", "manhattan", and "tanimoto". Default is to use "Euclidean" for continuous data, and "tanimoto" for factors.

lmode

specifies the learning algorithm. The default is "online" but "batch" and "pbatch" are available via kohonen

Value

a 'kohonen' object

References

Kohonen, T. (1995) Self-Organizing Maps. Springer-Verlag


johnlpearce/ECM documentation built on Dec. 21, 2021, 2:13 a.m.