map_inits: map_inits: Identifies initial values for optimal Exposure...

Description Usage Arguments Value

Description

map_inits: Identifies initial values for optimal Exposure Continuum Map fit via SOM

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
map_inits(
  trn_dat,
  xdim = 4,
  ydim = 3,
  maptopo = NULL,
  itermax = NULL,
  seedopt = "pca.sample",
  seedeval = "KL",
  distmet = NULL,
  nstarts = NULL,
  lmode = NULL
)

Arguments

trn_dat

is a data object to map. Should be a numerical or factor based data matrix.

xdim

is x-dimension of the SOM

ydim

is y-dimension of the SOM

maptopo

specifies the topology of the SOM grid as either "rectangular" or "hexagonal"

itermax

specifies the number if learning iterations

seedopt

specifies method for initialization values. "pca.sample", "pca" or "ran" accepted.

seedeval

specifies the evaluation statistic for seed optimalization.

distmet

specifies dissimilarity metric. Current options include "sumofsquares", "euclidean", "manhattan", and "tanimoto". Default is to use "Euclidean" for continuous data, and "tanimoto" for factors.

nstarts

specifies number of initialization schemes to test if inits are not provided

lmode

specifies the learning algorithm. The default is "online" but "batch" and "pbatch" are available via kohonen

Value

a data.frame containing evaluation measures


johnlpearce/ECM documentation built on Dec. 21, 2021, 2:13 a.m.