jomulder/BFpack: Flexible Bayes Factor Testing of Scientific Expectations

Implementation of various default Bayes factors for testing statistical hypotheses. The package is intended for applied quantitative researchers in the social and behavioral sciences, medical research, and related fields. The Bayes factor tests can be executed for statistical models such as univariate and multivariate normal linear models, generalized linear models, special cases of linear mixed models, survival models, relational event models. Parameters that can be tested are location parameters (e.g., regression coefficients), variances (e.g., group variances), and measures of association (e.g,. bivariate correlations). The statistical underpinnings are described in Mulder, Hoijtink, and Xin (2019) <arXiv:1904.00679>, Mulder and Gelissen (2019) <arXiv:1807.05819>, Mulder (2016) <DOI:10.1016/>, Mulder and Fox (2019) <DOI:10.1214/18-BA1115>, Mulder and Fox (2013) <DOI:10.1007/s11222-011-9295-3>, Boeing-Messing, van Assen, Hofman, Hoijtink, and Mulder <DOI:10.1037/met0000116>, Hoijtink, Mulder, van Lissa, and Gu, (2018) <DOI:10.31234/>, Gu, Mulder, and Hoijtink, (2018) <DOI:10.1111/bmsp.12110>, Hoijtink, Gu, and Mulder, (2018) <DOI:10.1111/bmsp.12145>, and Hoijtink, Gu, Mulder, and Rosseel, (2018) <DOI:10.1037/met0000187>.

Getting started

Package details

MaintainerJoris Mulder <[email protected]>
LicenseGPL (>= 3)
Package repositoryView on GitHub
Installation Install the latest version of this package by entering the following in R:
jomulder/BFpack documentation built on Nov. 6, 2019, 1:04 p.m.