library(BiocStyle)
BiocStyle::markdown()

This documents describes two use cases for the coordinate system mapping functionality of ensembldb: mapping of regions within protein sequences to the genome and mapping of genomic to protein sequence-relative coordinates. In addition, it showcases the advanced filtering capabilities implemented in ensembldb.

Query for helix-loop-helix transcription factors on chromosome 21

Down syndrome is a genetic disorder characterized by the presence of all or parts of a third copy of chromosome 21. It is associated, among other, with characteristic facial features and mild to moderate intellectual disability. The phenotypes are most likely the result from a gene dosage-dependent increased expression of the genes encoded on chromosome 21 [@LanaElola:2011fl]. Compared to other gene classes, transcription factors are more likely to have an immediate impact, even due to a moderate over-expression (which might be the result from gene duplication). One of the largest dimerizing transcription factor families is characterized by a basic helix-loop-helix domain [@Massari:2000um], a protein structural motif facilitating DNA binding.

The example below aims at identifying transcription factors with a basic helix-loop-helix domain (Pfam ID PF00010) that are encoded on chromosome 21. To this end we first load an R-library providing human annotations from Ensembl release 86 and pass the loaded EnsDb object along with a filter expression to the genes method that retrieves the corresponding genes. Filter expressions have to be written in the form ~ <field> <condition> <value> with <field> representing the database column to be used for the filter. Several such filter expressions can be concatenated with standard R logical expressions (such as & or |). To get a list of all available filters and their corresponding fields, the supportedFilters(edb) function could be used.

library(ensembldb)
library(EnsDb.Hsapiens.v86)
edb <- EnsDb.Hsapiens.v86

## Retrieve the genes
gns <- genes(edb, filter = ~ protein_domain_id == "PF00010" & seq_name == "21")

The function returned a GRanges object with the genomic position of the genes and additional gene-related annotations stored in metadata columns.

gns

Three transcription factors with a helix-loop-helix domain are encoded on chromosome 21: SIM2, which is a master regulator of neurogenesis and is thought to contribute to some specific phenotypes of Down syndrome [@Gardiner:2006uj] and the two genes OLIG1 and OLIG2 for which genetic triplication was shown to cause developmental brain defects [@Chakrabarti:2010dt]. To visualize the exonic regions encoding the helix-loop-helix domain of these genes we next retrieve their transcript models and the positions of all Pfam protein domains within the amino acid sequences of encoded by these transcripts. We process SIM2 separately from OLIG1 and OLIG2 because the latter are encoded in a narrow region on chromosome 21 and can thus be visualized easily within the same plot. We extract the transcript models for OLIG1 and OLIG2 that encode the protein domain using the getGeneRegionTrackForGviz function which returns the data in a format that can be directly passed to functions from the Gviz Bioconductor package [@Hahne:2016ha] for plotting. Since Gviz expects UCSC-style chromosome names instead of the Ensembl chromosome names (e.g. chr21 instead of 21), we change the format in which chromosome names are returned by ensembldb with the seqlevelsStyle method. All subsequent queries to the EnsDb database will return chromosome names in UCSC format.

## Change chromosome naming style to UCSC
seqlevelsStyle(edb) <- "UCSC"
## Subset the EnsDb to speed up vignette processing
edb <- filter(edb, filter = ~ seq_name %in% c("chr21", "chr16"))
## Retrieve the transcript models for OLIG1 and OLIG2 that encode the
## the protein domain
txs <- getGeneRegionTrackForGviz(
    edb, filter = ~ genename %in% c("OLIG1", "OLIG2") &
             protein_domain_id == "PF00010")

Next we fetch the coordinates of all Pfam protein domains encoded by these transcripts with the proteins method, asking for columns "prot_dom_start", "prot_dom_end" and "protein_domain_id" to be returned by the function. Note that we restrict the results in addition to protein domains defined in Pfam.

pdoms <- proteins(edb, filter = ~ tx_id %in% txs$transcript &
                           protein_domain_source == "pfam",
                  columns = c("protein_domain_id", "prot_dom_start",
                              "prot_dom_end"))
pdoms

We next map these protein-relative positions to the genome. We define first an IRanges object with the coordinates and submit this to the proteinToGenome function for mapping. Besides coordinates, the function requires also the respective protein identifiers which we supply as names.

pdoms_rng <- IRanges(start = pdoms$prot_dom_start, end = pdoms$prot_dom_end,
                     names = pdoms$protein_id)

pdoms_gnm <- proteinToGenome(pdoms_rng, edb)

The result is a list of GRanges objects with the genomic coordinates at which the protein domains are encoded, one for each of the input protein domains. Additional information such as the protein ID, the encoding transcript and the exons of the respective transcript in which the domain is encoded are provided as metadata columns.

pdoms_gnm

Column cds_ok in the result object indicates whether the length of the CDS of the encoding transcript matches the length of the protein sequence. For transcripts with unknown 3' and/or 5' CDS ends these will differ. The mapping result has to be re-organized before being plotted: Gviz expects a single GRanges object, with specific metadata columns for the grouping of the individual genomic regions. This is performed in the code block below.

## Convert the list to a GRanges with grouping information
pdoms_gnm_grng <- unlist(GRangesList(pdoms_gnm))
pdoms_gnm_grng$id <- rep(pdoms$protein_domain_id, lengths(pdoms_gnm))
pdoms_gnm_grng$grp <- rep(1:nrow(pdoms), lengths(pdoms_gnm))

pdoms_gnm_grng

We next define the individual tracks we want to visualize and plot them with the plotTracks function from the Gviz package.

library(Gviz)

## Define the individual tracks:
## - Ideogram
## ideo_track <- IdeogramTrack(genome = "hg38", chromosome = "chr21")
## - Genome axis
gaxis_track <- GenomeAxisTrack()
## - Transcripts
gene_track <- GeneRegionTrack(txs, showId = TRUE, just.group = "right",
                              name = "", geneSymbol = TRUE, size = 0.5)
## - Protein domains
pdom_track <- AnnotationTrack(pdoms_gnm_grng, group = pdoms_gnm_grng$grp,
                              id = pdoms_gnm_grng$id, groupAnnotation = "id",
                              just.group = "right", shape = "box",
                              name = "Protein domains", size = 0.5)

## Generate the plot
plotTracks(list(gaxis_track, gene_track, pdom_track))

All transcripts are relatively short with the full coding region being in a single exon. Also, both transcripts encode a protein with a single protein domain, the helix-loop-helix domain PF00010.

Next we repeat the analysis for SIM2 by first fetching all of its transcript variants encoding the PF00010 Pfam protein domain from the database. Subsequently we retrieve all Pfam protein domains encoded in these transcripts.

## Fetch all SIM2 transcripts encoding PF00010
txs <- getGeneRegionTrackForGviz(edb, filter = ~ genename == "SIM2" &
                                          protein_domain_id == "PF00010")
## Fetch all Pfam protein domains within these transcripts
pdoms <- proteins(edb, filter = ~ tx_id %in% txs$transcript &
                           protein_domain_source == "pfam",
                  columns = c("protein_domain_id", "prot_dom_start",
                              "prot_dom_end"))

At last we have to map the protein domain coordinates to the genome and prepare the data for the plot. Since the code is essentially identical to the one for OLIG1 and OLIG2 it is not displayed.

pdoms_rng <- IRanges(start = pdoms$prot_dom_start, end = pdoms$prot_dom_end,
                     names = pdoms$protein_id)
pdoms_gnm <- proteinToGenome(pdoms_rng, edb)

## Convert the list to a GRanges with grouping information
pdoms_gnm_grng <- unlist(GRangesList(pdoms_gnm))
pdoms_gnm_grng$id <- rep(pdoms$protein_domain_id, lengths(pdoms_gnm))
pdoms_gnm_grng$grp <- rep(1:nrow(pdoms), lengths(pdoms_gnm))

gene_track <- GeneRegionTrack(txs, showId = TRUE, just.group = "right",
                              name = "", geneSymbol = TRUE, size = 0.5)
## - Protein domains
pdom_track <- AnnotationTrack(pdoms_gnm_grng, group = pdoms_gnm_grng$grp,
                              id = pdoms_gnm_grng$id, groupAnnotation = "id",
                              just.group = "right", shape = "box",
                              name = "Protein domains", size = 0.5)

## Generate the plot
plotTracks(list(gaxis_track, gene_track, pdom_track))

The SIM2 transcript encodes a protein with in total 4 protein domains. The helix-loop-helix domain PF00010 is encoded in its first exon.

Mapping of genomic coordinates to protein-relative positions

One of the known mutations for human red hair color is located at position 16:89920138 (dbSNP ID rs1805009) on the human genome (version GRCh38). Below we map this genomic coordinate to the respective coordinate within the protein sequence encoded at that location using the genomeToProtein function. Note that we use "chr16" as the name of the chromosome, since we changed the chromosome naming style to UCSC in the previous example.

gnm_pos <- GRanges("chr16", IRanges(89920138, width = 1))
prt_pos <- genomeToProtein(gnm_pos, edb)
prt_pos

The genomic position could thus be mapped to the amino acid 294 in each of the 3 proteins listed above. Using the select function we retrieve the official symbol of the gene for these 3 proteins.

select(edb, keys = ~ protein_id == names(prt_pos[[1]]), columns = "SYMBOL")

Two proteins are from the MC1R gene and one from RP11-566K11.2 (ENSG00000198211) a gene which exons overlap exons from MC1R as well as exons of the more downstream located gene TUBB3. To visualize this we first fetch transcripts overlapping the genomic position of interest and subsequently all additional transcripts within the region defined by the most downstream and upstream exons of the transcripts.

## Get transcripts overlapping the genomic position.
txs <- getGeneRegionTrackForGviz(edb, filter = GRangesFilter(gnm_pos))

## Get all transcripts within the region from the start of the most 5'
## and end of the most 3' exon.
all_txs <- getGeneRegionTrackForGviz(
    edb, filter = GRangesFilter(range(txs), type = "within"))

## Plot the data
## - Ideogram
## ideo_track <- IdeogramTrack(genome = "hg38", chromosome = "chr16")
## - Genome axis
gaxis_track <- GenomeAxisTrack()
## - Transcripts
gene_track <- GeneRegionTrack(all_txs, showId = TRUE, just.group = "right",
                              name = "", geneSymbol = TRUE, size = 0.5)
## - highlight the region.
hl_track <- HighlightTrack(list(gaxis_track, gene_track), range = gnm_pos)

## Generate the plot
plotTracks(list(hl_track))

In the plot above we see 4 transcripts for which one exon overlaps the genomic position of the variant: two of the gene MC1R, one of RP11-566K11.2 and one of RP11-566K11.4, a non-coding gene encoded on the reverse strand. Using the proteins method we next extract the sequences of the proteins encoded by the 3 transcripts on the forward strand and determine the amino acid at position 294 in these. To retrieve the results in a format most suitable for the representation of amino acid sequences we specify return.type = "AAStringSet" in the proteins call.

## Get the amino acid sequences for the 3 transcripts
prt_seq <- proteins(edb, return.type = "AAStringSet",
                    filter = ~ protein_id == names(prt_pos[[1]]))
## Extract the amino acid at position 294
library(Biostrings)
subseq(prt_seq, start = 294, end = 294)

The amino acid at position 294 is for all an aspartic acid ("D") which is in agreement with the reference amino acid of mutation Asp294His [@Valverde:1995if] described by the dbSNP ID of this example.

Session information

sessionInfo()

References



jotsetung/ensembldb documentation built on Aug. 21, 2024, 11:23 a.m.