| maxlik.cov.sp | R Documentation | 
Estimates covariance parameters of spatial covariance functions using maximum likelihood or restricted maximum likelihood.  See cov.sp for more details of covariance functions to be estimated.  
	maxlik.cov.sp(X, y, coords, sp.type = "exponential", 
	    range.par = stop("specify range.par argument"), 
	    error.ratio = stop("specify error.ratio argument"), 
	    smoothness = 0.5,  
	    D = NULL, reml = TRUE, lower = NULL, upper = NULL, 
	    control = list(trace = TRUE), optimizer="nlminb")
| X | A numeric matrix of size  | 
| y | A vector of length  | 
| coords | A numeric matrix of size  | 
| sp.type | A character vector specifying the spatial covariance type. Valid types are currently exponential, gaussian, matern, and spherical. | 
| range.par | An initial guess for the spatial dependence parameter. | 
| error.ratio | A value non-negative value indicating the ratio  | 
| smoothness | A positive number indicating the smoothness of the matern covariance function, if applicable. | 
| D | The Euclidean distance matrix for the coords matrix.  Must be of size  | 
| reml | A boolean value indicating whether restricted maximum likelihood estimation should be used. Defaults to TRUE. | 
| lower | A vector giving lower bounds for the covariance parameters  | 
| upper | A vector giving upper bounds for the covariance parameters  | 
| control | A list giving tuning parameters for the  | 
| optimizer | A vector describing the optimization function to use for the optimization.  Currently, only  | 
When doing the numerical optimizaiton, the covariance function is reparameterized slightly to speedup computation.  
Specifically, the variance parameter for the process of interest,sp.par[1], is profiled out,
and the error.var parameter is parameterized as sp.par[1] * error.ratio, where error.ratio = error.var/sp.par[1].
Returns a list with the following elements:
| sp.type | The covariance form used. | 
| sp.par | A vector containing the estimated variance of the hidden process and the spatial dependence. | 
| error.var | The estimated error variance. | 
| smoothness | The smoothness of the matern covariance function. | 
| par |  The final values of the optimization parameters.  Note that these will not necessarily match  | 
| convergence |  Convergence message from  | 
| message |  Message from  | 
| iterations | Number of iterations for optimization to converge. | 
| evaluations |  Evaluations from  | 
Joshua French
cov.st 
#generate 20 random (x, y) coordinates
coords <- matrix(rnorm(20), ncol = 2)
#create design matrix
X <- cbind(1, coords)
#create mean for observed data to be generated
mu <- X %*% c(1, 2, 3)
#generate covariance matrix
V <- exp(-dist1(coords))
#generate observe data
y <- rmvnorm(mu = mu, V = V)
#find maximum likelihood estimates of covariance parameters
maxlik.cov.sp(X = X, y = y, coords = coords,
    sp.type = "exponential", range.par = 1, error.ratio = 0, 
    reml = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.