Description Usage Arguments Value See Also Examples
binom.explore
computes (through simulation) the power of a binomial experiment under different sample sizes.
1 2 3 | binom.explore(lown, topn, p, r = 10000, alternative = c("two.sided", "less",
"greater"), alpha = 0.05, nullp = 0.5, conf.level = 0.95,
plotit = TRUE)
|
lown |
smallest sample size to explore. |
topn |
largest sample size to explore. |
p |
predicted probability of success. |
r |
number of simulations to compute power. |
alternative |
type of alternative hypothesis in binomial test. Must be " |
alpha |
significance threshhold. |
nullp |
probability of success in null hypothesis. |
conf.level |
size of confidence intervals. |
plotit |
logical (default= |
The probability of finding p < α with the experiment description and a 95
binom.power
, binom.ppow
, binom.explore
, and binom.pexplore
.
1 2 3 | binom.explore(lown=16, topn=24, p=0.8)
binom.explore(lown=16, topn=24, p=0.8, alternative="greater")
binom.explore(lown=16, topn=24, p=0.6, r=5000, nullp=0.25)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.