sampleComplexityPAC <-
function(nVar, maxRem, error=.1, signif=.05){
rems=c(0:maxRem)
rest=nVar-rems
VC_Dim_MLRM = vcDimensionLinearRegression(rest)
VC_Dim_ANN = vcDimensionArtificialNeuralNetwork(rest)
VC_Dim_NB = vcDimensionNaiveBayes(rest)
SampleSize_PAC_ANN_Upper = round( (1/error)*(4*log10(2/signif) + 8*VC_Dim_ANN*log10(13/error)) )
SampleSize_PAC_MLRM_Upper = round( (1/error)*(4*log10(2/signif) + 8*VC_Dim_MLRM*log10(13/error)) )
SampleSize_PAC_NB_Upper = round( (1/error)*(4*log10(2/signif) + 8*VC_Dim_NB*log10(13/error)) )
tab = cbind(
VariaveisRemovidas=rems,
VariaveisRestantes=rest,
SampleSize_PAC_ANN_Upper=SampleSize_PAC_ANN_Upper,
SampleSize_PAC_MLRM_Upper=SampleSize_PAC_MLRM_Upper,
SampleSize_PAC_NB_Upper=SampleSize_PAC_NB_Upper
)
return(tab)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.