json_obj <- list(
displayName = "TRAINING_PIPELINE_NAME",
inputDataConfig = list(
datasetId = "DATASET_ID",
annotationsFilter = "ANNOTATIONS_FILTER",
annotationSchemaUri = "ANNOTATION_SCHEMA_URI",
fractionSplit = list(
trainingFraction = "TRAINING_FRACTION",
validationFraction = "VALIDATION_FRACTION",
testFraction = "TEST_FRACTION"
),
filterSplit = list(
trainingFilter = "TRAINING_FILTER",
validationFilter = "VALIDATION_FILTER",
testFilter = "TEST_FILTER"
),
predefinedSplit = list(
key = "PREDEFINED_SPLIT_KEY"
),
timestampSplit = list(
trainingFraction = "TIMESTAMP_TRAINING_FRACTION",
validationFraction = "TIMESTAMP_VALIDATION_FRACTION",
testFraction = "TIMESTAMP_TEST_FRACTION",
key = "TIMESTAMP_SPLIT_KEY"
),
gcsDestination = list(
outputUriPrefix = "OUTPUT_URI_PREFIX"
)
),
trainingTaskDefinition = "gs://google-cloud-aiplatform/schema/trainingjob/definition/custom_task_1.0.0.yaml",
trainingTaskInputs = list(
workerPoolSpecs = list(
list(
machineSpec = list(
machineType = "MACHINE_TYPE",
acceleratorType = "ACCELERATOR_TYPE",
acceleratorCount = "ACCELERATOR_COUNT"
),
replicaCount = "REPLICA_COUNT",
containerSpec = list(
imageUri = "CUSTOM_CONTAINER_IMAGE_URI",
command = list("CUSTOM_CONTAINER_COMMAND"),
args = list("CUSTOM_CONTAINER_ARGS")
),
pythonPackageSpec = list(
executorImageUri = "PYTHON_PACKAGE_EXECUTOR_IMAGE_URI",
packageUris = list("PYTHON_PACKAGE_URIS"),
pythonModule = "PYTHON_MODULE",
args = list("PYTHON_PACKAGE_ARGS")
)
)
),
scheduling = list(
TIMEOUT = "TIMEOUT"
)
),
modelToUpload = list(
displayName = "MODEL_NAME",
predictSchemata = list(),
containerSpec = list(
imageUri = "IMAGE_URI"
)
),
labels = list(
LABEL_NAME_1 = "LABEL_VALUE_1",
LABEL_NAME_2 = "LABEL_VALUE_2"
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.