# Copyright (C) 2010 Jelmer Ypma. All Rights Reserved.
# SPDX-License-Identifier: LGPL-3.0-or-later
#
# File: test-simple.R
# Author: Jelmer Ypma
# Date: 20 June 2010
#
# Maintenance assumed by Avraham Adler (AA) on 2023-02-10
#
# Example showing how to solve a simple constrained problem.
#
# min x^2
# s.t. x >= 5
#
# re-formulate constraint to be of form g(x) <= 0
# 5 - x <= 0
# we could use a bound constraint as well here
#
# CHANGELOG:
# 2014-05-05: Changed example to use unit testing framework testthat.
# 2019-12-12: Corrected warnings and using updated testtthat framework (AA)
# 2023-02-07: Remove wrapping tests in "test_that" to reduce duplication. (AA)
#
library(nloptr)
tol <- sqrt(.Machine$double.eps)
# Test simple constrained optimization problem with gradient information.
# Objective function
eval_f <- function(x) x ^ 2
# Gradient of objective function.
eval_grad_f <- function(x) 2 * x
# Inequality constraint function.
eval_g_ineq <- function(x) 5 - x
# Jacobian of constraint.
eval_jac_g_ineq <- function(x) -1
# Optimal solution.
solution.opt <- 5
# Solve using NLOPT_LD_MMA with gradient information supplied in separate
# function.
res <- nloptr(x0 = 1,
eval_f = eval_f,
eval_grad_f = eval_grad_f,
eval_g_ineq = eval_g_ineq,
eval_jac_g_ineq = eval_jac_g_ineq,
opts = list("algorithm" = "NLOPT_LD_MMA",
"xtol_rel" = 1e-4))
# Run some checks on the optimal solution.
expect_equal(res$solution, solution.opt, tolerance = tol)
# Check whether constraints are violated (up to specified tolerance).
expect_true(eval_g_ineq(res$solution) <= res$options$tol_constraints_ineq)
# Test simple constrained optimization problem without gradient information.
# Solve using NLOPT_LN_COBYLA without gradient information
res <- nloptr(x0 = 1,
eval_f = eval_f,
eval_g_ineq = eval_g_ineq,
opts = list("algorithm" = "NLOPT_LN_COBYLA",
"xtol_rel" = 1e-6,
"tol_constraints_ineq" = 1e-6))
# Run some checks on the optimal solution.
expect_equal(res$solution, solution.opt, tolerance = 1e-6)
# Check whether constraints are violated (up to specified tolerance).
expect_true(eval_g_ineq(res$solution) <= res$options$tol_constraints_ineq)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.