plot.qLearnS1 | R Documentation |
Displays common residual plots based on the model for the first-stage regression in Q-learning. Due to the response being a non-smooth, non-monotone transformation of the data, these plots may not be meaningful.
## S3 method for class 'qLearnS1' plot(x, ...)
x |
object of type |
... |
additional arguments to be passed to |
None.
Kristin A. Linn <kalinn@ncsu.edu>, Eric B. Laber, Leonard A. Stefanski
Linn, K. A., Laber, E. B., Stefanski, L. A. (2015) "iqLearn: Interactive Q-Learning in R", Journal of Statistical Software, 64(1), 1–25.
Laber, E. B., Linn, K. A., and Stefanski, L. A. (2014) "Interactive model building for Q-learning", Biometrika, 101(4), 831-847.
qLearnS1
## load in two-stage BMI data data (bmiData) bmiData$A1[which (bmiData$A1=="MR")] = 1 bmiData$A1[which (bmiData$A1=="CD")] = -1 bmiData$A2[which (bmiData$A2=="MR")] = 1 bmiData$A2[which (bmiData$A2=="CD")] = -1 bmiData$A1 = as.numeric (bmiData$A1) bmiData$A2 = as.numeric (bmiData$A2) s1vars = bmiData[,1:4] s2vars = bmiData[,c (1, 3, 5)] a1 = bmiData[,7] a2 = bmiData[,8] ## define response y to be the negative 12 month change in BMI from ## baseline y = -(bmiData[,6] - bmiData[,4])/bmiData[,4] ## second-stage regression fitQ2 = qLearnS2 (y ~ gender + parent_BMI + month4_BMI + A2*(parent_BMI + month4_BMI), data=bmiData, "A2", c("parent_BMI", "month4_BMI")) ## first-stage regression fitQ1 = qLearnS1 (~ gender + race + parent_BMI + baseline_BMI + A1*(gender + parent_BMI), data=bmiData, "A1", c ("gender", "parent_BMI"), fitQ2) plot (fitQ1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.