run_comparison: Run analysis in streamlined approach

View source: R/run_comparisons.R

run_comparisonR Documentation

Run analysis in streamlined approach

Description

Create the plots for each comparison. Run the same analysis on dataset object (ds parameter) and transformed values (ds.imp parameter, optional).

Usage

run_comparison(
  ds,
  rowAnns,
  colAnns = NA,
  output_folder = ".",
  ds.imp = NULL,
  feat_sets = NULL,
  var_colors = NULL,
  gradient_palette = "RdBu",
  corr_method = "pearson",
  pval.test = "t.test",
  pval.label = "p.signif",
  boxplot_log10_y = F,
  FC.method = "divide",
  paired_analysis_column = NA,
  do_paired_analysis = F,
  make.QC.param = F,
  make.QC.feature = F,
  make.feat.plots = F,
  discrete_stacked_params = NULL,
  make.het.plot = F,
  make.indiv.boxplot = F,
  make.overview.boxplot = F,
  make.heatmap = F,
  make.corrplot = F,
  make.overview.corrscatt = F,
  make.indiv.corrscatt = F,
  make.barplot = F,
  make.FC.pval.plot = F,
  save_table = F
)

Arguments

ds

A dataset object (a list with vals, rowAnn, colAnn, comparison, name).

rowAnns

A character vector of 1-2 column names in ds$rowAnn. c(MainComparison, Subgroup)

colAnns

A character vector of 1-2 column names in ds$colAnn. c(Parameter, Feature/Stain/Gene)

output_folder

The main output folder for all custom analysis plots and boxplots for by.parameter and by.feature analysis

ds.imp

A dataset object similar to ds with imputed or another transformation values.

feat_sets

A list of 2 data frames for feature sets and parameters.

var_colors

A named vector with colors as values and annotations/groups as names.

gradient_palette

RColorBrewer palette name for gradients (e.g. heatmap, correlation plots). See RColorBrewer::display.brewer.all() for all options.

corr_method

Method for correlation (one of "pearson","spearman","kendall").

pval.test

Which two-samples testing should be used? String corresponding to "method" parameter in stat_compare_means. Allowed values are "t.test" and "wilcox.test".

pval.label

How to display p-values? String corresponding to "label" parameter in stat_compare_means. Allowed values are "p.signif" (stars) and "p.format" (number).

boxplot_log10_y

Log10 the values on y axis for boxplots and patient paired slopegraphs? Logical (T/F). Default is FALSE.

FC.method

Fold change computation method to use, either "divide" (for non-transformed values) or "subtract" (for log2-transformed values)

paired_analysis_column

column name in ds$rowAnn to create paired analysis plots for, e.g. PatientID if ds is data for all cores

do_paired_analysis

makes plots to look at subgroup differences within the same patient. Will only run if paired_analysis_column is specified.

make.QC.param, make.QC.feature, make.feat.plots, make.het.plot, make.indiv.boxplot, make.overview.boxplot, make.heatmap, make.corrplot, make.overview.corrscatt, make.indiv.corrscatt, make.barplot, make.FC.pval.plot

Logicals (TRUE/FALSE) indicating whether to make these plots. Note: make.indiv.corrscatt = T takes a long time.

discrete_stacked_params

parameter names to search for in colAnn1 to make discrete stacked barplots, e.g. "Het.Score"

save_table

Print MainComparison + ID data to csv file.

run

A one row data frame or list object with logicals for what to run, names: make.boxplots, make.paired.boxplots, make.heatmaps, make.surv.curve


kazeera/hourglass documentation built on April 5, 2025, 7:18 a.m.