Description Usage Arguments Value
View source: R/risk.partition.ITR.R
Determines optimal partition for an input node in an rcDT model.
1 2 3 4 5 |
dat |
data.frame. Data used to identify split. |
split.var |
numeric vector. Columns of spliting variables. |
test |
data.frame of testing observations. Should be formatted the same as 'data'. |
risk.threshold |
numeric. Desired level of risk control. |
min.ndsz |
numeric specifying minimum number of observations required to call a node terminal. Defaults to 20. |
n0 |
numeric specifying minimum number of treatment/control observations needed in a split to declare a node terminal. Defaults to 5. |
lambda |
numeric. Penalty parameter for risk scores. Defaults to 0, i.e. no constraint. |
name |
char. Name of internal node, used for ordering splits. |
ctg |
numeric vector corresponding to the categorical input columns. Defaults to NULL. Not available yet. |
max.depth |
numeric specifying maximum depth of the tree. Defaults to 15 levels. |
mtry |
numeric specifying the number of randomly selected splitting variables to be included. Defaults to number of splitting variables. |
dat.rest |
dataframe. Data outside current splitting node. |
max.score |
numeric. Current score for the tree. |
AIPWE |
logical. Should AIPWE (TRUE) or IPWE (FALSE) be used. Not available yet. |
use.other.nodes |
logical. Should global estimator of objective function be used. Defaults to TRUE. |
extremeRandomized |
logical. Experimental for randomly selecting cutpoints in a random forest model. Defaults to FALSE |
summary of the best split for a given data frame.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.