risk.partition.ITR: Determines optimal partition.

Description Usage Arguments Value

View source: R/risk.partition.ITR.R

Description

Determines optimal partition for an input node in an rcDT model.

Usage

1
2
3
4
5
risk.partition.ITR(dat, split.var, test = NULL, risk.threshold = NA,
  min.ndsz = 20, n0 = 5, lambda = 0, name = "0", ctg = ctg,
  max.depth = 15, mtry = length(split.var), dat.rest = NULL,
  max.score = NULL, AIPWE = AIPWE, use.other.nodes = TRUE,
  extremeRandomized = FALSE)

Arguments

dat

data.frame. Data used to identify split.

split.var

numeric vector. Columns of spliting variables.

test

data.frame of testing observations. Should be formatted the same as 'data'.

risk.threshold

numeric. Desired level of risk control.

min.ndsz

numeric specifying minimum number of observations required to call a node terminal. Defaults to 20.

n0

numeric specifying minimum number of treatment/control observations needed in a split to declare a node terminal. Defaults to 5.

lambda

numeric. Penalty parameter for risk scores. Defaults to 0, i.e. no constraint.

name

char. Name of internal node, used for ordering splits.

ctg

numeric vector corresponding to the categorical input columns. Defaults to NULL. Not available yet.

max.depth

numeric specifying maximum depth of the tree. Defaults to 15 levels.

mtry

numeric specifying the number of randomly selected splitting variables to be included. Defaults to number of splitting variables.

dat.rest

dataframe. Data outside current splitting node.

max.score

numeric. Current score for the tree.

AIPWE

logical. Should AIPWE (TRUE) or IPWE (FALSE) be used. Not available yet.

use.other.nodes

logical. Should global estimator of objective function be used. Defaults to TRUE.

extremeRandomized

logical. Experimental for randomly selecting cutpoints in a random forest model. Defaults to FALSE

Value

summary of the best split for a given data frame.


kdoub5ha/rcITR documentation built on Aug. 5, 2020, 9:05 p.m.