Description Usage Arguments Value Examples
Constructs a risk controlled random forest (rcRF) composed of rcDT predictors.
1 2 3 4 5 6 7 8 | rcRF(data, split.var, efficacy = "y", risk = "r", col.trt = "trt",
col.prtx = "prtx", risk.control = TRUE, risk.threshold = NA,
lambda = 0, stabilize = TRUE, stabilize.type = c("linear", "rf"),
test = NULL, ctg = NULL, N0 = 20, n0 = 5, max.depth = 10,
ntree = 500, mtry = max(floor(length(split.var)/3), 1),
avoid.nul.tree = FALSE, AIPWE = FALSE, verbose = FALSE,
use.other.nodes = TRUE, extremeRandomized = FALSE, importance = FALSE,
order.importances = TRUE)
|
data |
data.frame. Data used to construct rcRF model. Must contain efficacy variable (y), risk variable (r), binary treatment indicator coded as 0 / 1 (trt), propensity score (prtx), candidate splitting covariates. |
split.var |
numeric vector. Columns of spliting variables. |
efficacy |
char. Efficacy outcome column. Defaults to 'y'. |
risk |
char. Risk outcome column. Defaults to 'r'. |
col.trt |
char. Treatment column name |
risk.control |
logical. Should risk be controlled? Defaults to TRUE. |
risk.threshold |
numeric. Desired level of risk control. |
lambda |
numeric. Penalty parameter for risk scores. Defaults to 0, i.e. no constraint. Optional arguments |
stabilize |
logical indicating if efficacy should be modeled using residuals. Defaults to TRUE. |
stabilize.type |
character specifying method used for estimating residuals. Current options are 'linear' for linear model (default) and 'rf' for random forest. |
test |
data.frame of testing observations. Should be formatted the same as 'data'. |
ctg |
numeric vector corresponding to the categorical input columns. Defaults to NULL. Not available yet. |
N0 |
numeric specifying minimum number of observations required to call a node terminal. Defaults to 20. |
n0 |
numeric specifying minimum number of treatment/control observations needed in a split to declare a node terminal. Defaults to 5. |
max.depth |
numeric specifying maximum depth of the tree. Defaults to 15 levels. |
ntree |
numeric. Number of trees generated. Defaults to 500. |
mtry |
numeric specifying the number of randomly selected splitting variables to be included. Defaults to larger of 1 and length(split.var)/3. |
avoid.nul.tree |
logical. Should null trees be discarded? |
AIPWE |
logical. Should AIPWE (TRUE) or IPWE (FALSE) be used. Not available yet. |
verbose |
logical. Give updates about forest progression? |
use.other.nodes |
logical. Should global estimator of objective function be used. Defaults to TRUE. |
extremeRandomized |
logical. Experimental for randomly selecting cutpoints in a random forest model. Defaults to FALSE and users should change this at their own peril. |
importance |
logical. Indicated if variable importance measures should be estimated and returned. Defaults to FALSE. |
order.importances |
logical. Should importances be ordered (if requested)? |
col.ptrx |
char. Propensity score column name. |
List of rcRF outputs
ID.Boots.Samples |
list of bootstrap sample IDs |
TREES |
list of trees |
Model.Specification |
information about the input parameters of the forest |
... |
Summaries for in and out of bag samples |
1 2 3 4 5 6 7 8 9 | set.seed(123)
dat <- generateData()
# Generates rcRF model using simualated data with splitting variables located in columns 1-10.
fit <- rcRF(data = dat,
split.var = 1:10,
ntree = 200,
risk.threshold = 2.75,
lambda = 1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.