Description Usage Arguments Value Examples
Constructs a risk controlled random forest (rcRF) composed of rcDT predictors.
1 2 3 4 5 6 7 8  | rcRF(data, split.var, efficacy = "y", risk = "r", col.trt = "trt",
  col.prtx = "prtx", risk.control = TRUE, risk.threshold = NA,
  lambda = 0, stabilize = TRUE, stabilize.type = c("linear", "rf"),
  test = NULL, ctg = NULL, N0 = 20, n0 = 5, max.depth = 10,
  ntree = 500, mtry = max(floor(length(split.var)/3), 1),
  avoid.nul.tree = FALSE, AIPWE = FALSE, verbose = FALSE,
  use.other.nodes = TRUE, extremeRandomized = FALSE, importance = FALSE,
  order.importances = TRUE)
 | 
data | 
 data.frame. Data used to construct rcRF model. Must contain efficacy variable (y), risk variable (r), binary treatment indicator coded as 0 / 1 (trt), propensity score (prtx), candidate splitting covariates.  | 
split.var | 
 numeric vector. Columns of spliting variables.  | 
efficacy | 
 char. Efficacy outcome column. Defaults to 'y'.  | 
risk | 
 char. Risk outcome column. Defaults to 'r'.  | 
col.trt | 
 char. Treatment column name  | 
risk.control | 
 logical. Should risk be controlled? Defaults to TRUE.  | 
risk.threshold | 
 numeric. Desired level of risk control.  | 
lambda | 
 numeric. Penalty parameter for risk scores. Defaults to 0, i.e. no constraint. Optional arguments  | 
stabilize | 
 logical indicating if efficacy should be modeled using residuals. Defaults to TRUE.  | 
stabilize.type | 
 character specifying method used for estimating residuals. Current options are 'linear' for linear model (default) and 'rf' for random forest.  | 
test | 
 data.frame of testing observations. Should be formatted the same as 'data'.  | 
ctg | 
 numeric vector corresponding to the categorical input columns. Defaults to NULL. Not available yet.  | 
N0 | 
 numeric specifying minimum number of observations required to call a node terminal. Defaults to 20.  | 
n0 | 
 numeric specifying minimum number of treatment/control observations needed in a split to declare a node terminal. Defaults to 5.  | 
max.depth | 
 numeric specifying maximum depth of the tree. Defaults to 15 levels.  | 
ntree | 
 numeric. Number of trees generated. Defaults to 500.  | 
mtry | 
 numeric specifying the number of randomly selected splitting variables to be included. Defaults to larger of 1 and length(split.var)/3.  | 
avoid.nul.tree | 
 logical. Should null trees be discarded?  | 
AIPWE | 
 logical. Should AIPWE (TRUE) or IPWE (FALSE) be used. Not available yet.  | 
verbose | 
 logical. Give updates about forest progression?  | 
use.other.nodes | 
 logical. Should global estimator of objective function be used. Defaults to TRUE.  | 
extremeRandomized | 
 logical. Experimental for randomly selecting cutpoints in a random forest model. Defaults to FALSE and users should change this at their own peril.  | 
importance | 
 logical. Indicated if variable importance measures should be estimated and returned. Defaults to FALSE.  | 
order.importances | 
 logical. Should importances be ordered (if requested)?  | 
col.ptrx | 
 char. Propensity score column name.  | 
List of rcRF outputs
ID.Boots.Samples | 
 list of bootstrap sample IDs  | 
TREES | 
 list of trees  | 
Model.Specification | 
 information about the input parameters of the forest  | 
... | 
 Summaries for in and out of bag samples  | 
1 2 3 4 5 6 7 8 9  | set.seed(123)
dat <- generateData()
# Generates rcRF model using simualated data with splitting variables located in columns 1-10.
fit <- rcRF(data = dat, 
            split.var = 1:10, 
            ntree = 200,
            risk.threshold = 2.75, 
            lambda = 1)
            
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.