####--------------------------------SHORTCUTS-------------------------------####
lssegm <- list.files(paste0(path_analysis_results_segm_segm_ROI), pattern=".shp")
lssegmta1 <- list.files(paste0(path_analysis_results_segm_segm_ta1), pattern=".shp")
#-----------------------------LOAD SEGMENTATION OF ROI-------------------------#
lssegm
#[1] "chm1_test_0.shp" "chm1_test_1.shp" "chm1_test_2.shp" "chm1_test_3.shp"
#[5] "chm1_test_vp1.shp" "chm1_test_vp2.shp" "chm1_test_vp3.shp"
segm_ROI <- readOGR(file.path(path_analysis_results_segm_segm_ROI, lssegm[[1]]))
#--------------------------LOAD SEGMENTATION OF AREA 1-------------------------#
lssegmta1
#[1] "chm1_test_0.shp" "chm1_test_1.shp" "chm1_test_2.shp" "chm1_test_3.shp"
#[5] "chm1_test_vp1.shp" "chm1_test_vp2.shp" "chm1_test_vp3.shp"
seg_1 <- readOGR(paste0(path_analysis_results_segm_segm_ta1, lssegm[[5]]))
################################################################################
#NOTE: 9.1 HAS TO BE PROCESSED RIGHT AFTER THE PREDICTION ON TEST AREA !
# 9.2 HAS TO BE PROCESSED RIGHT AFTER THE PREDICTION ON ROI!
#Because IKARUS::classSegVal only takes the prediction as pred=pred_1$prediction,
#not as simply prediction.
####--1.VALIDATION CLASSIFICATION TEST AREA 1 WITH SEGMENTATION TEST AREA 1-####
#the best classification is 1, chosen visually in QGIS
#from the prediction order of classes:
#"grass" "shadow" "shrubs" "stone" "tree" "tree_in_shadow"
#IKARUS::classSegVal only takes data format pred_1$prediction!
#----------------------------validate class 5, trees---------------------------#
validation_trees <- IKARUS::classSegVal(pred=pred_1$prediction, seg=seg_1,
classTree = 5, reclass = NULL)
#IKARUS starting validation
#valdiation score: 0.8093 @ 0.6656
# nclass nseg overclass underclass hit hitrate rate underclass rate overclass
#1 22012 33930 4197 16115 17815 0.8093 0.4749 0.1907
writeRaster(validation_trees, paste0(path_analysis_results_validation,
"valid_area_1_trees"), format="GTiff",
overwrite = TRUE)
#--------------------validate class 5+6, trees+tree_in_shadow------------------#
validation_trees_treesnshadow <- IKARUS::classSegVal(pred=pred_1$prediction,
seg=seg_1,classTree=5,
reclass=6)
#IKARUS starting validation
#valdiation score: 0.7593 @ 0.5776
# nclass nseg overclass underclass hit hitrate rate underclass rate overclass
#1 29633 33930 7133 11430 22500 0.7593 0.3369 0.2407
writeRaster(validation_trees_treesnshadow, paste0(path_analysis_results_validation,
"valid_area_1_treesnshadows"),
format="GTiff", overwrite = TRUE)
####----------2.VALIDATION CLASSIFICATION ROI WITH SEGMENTATION ROI---------####
#the best classification is also in the case of the ROI pred_1_ROI, chosen visually in QGIS
#from the prediction order of classes:
#"grass" "shadow" "shrubs" "stone" "tree" "tree_in_shadow"
#IKARUS::classSegVal only takes data format pred_1$prediction!
#----------------------------validate class 5, trees---------------------------#
validation_trees_ROI <- IKARUS::classSegVal(pred=pred_1_ROI$prediction, seg=segm_ROI,
classTree = 5, reclass = NULL)
#IKARUS starting validation
#valdiation score: 0.4411 @ 1.0089
# nclass nseg overclass underclass hit hitrate rate underclass rate overclass
#1 886769 711102 495632 319965 391137 0.4411 0.45 0.5589
writeRaster(validation_trees_ROI, paste0(path_analysis_results_validation_ROI,
"valid_trees_ROI"), format="GTiff",
overwrite = TRUE)
#--------------------validate class 5+6, trees+tree_in_shadow------------------#
validation_trees_treesnshadow_ROI <- IKARUS::classSegVal(pred=pred_1_ROI$prediction,
seg=segm_ROI, classTree=5,
reclass=6)
#IKARUS starting validation
#valdiation score: 0.4222 @ 0.9187
# nclass nseg overclass underclass hit hitrate rate underclass rate overclass
#1 1110145 711102 641439 242396 468706 0.4222 0.3409 0.5778
writeRaster(validation_trees_treesnshadow_ROI, paste0(path_analysis_results_validation_ROI,
"valid_treesnshadows_ROI"),
format="GTiff", overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.