fista_LpS: low-rank plus sparse structure matrix estimation function...

Description Usage Arguments Details Value References Examples

View source: R/fista_LpS.R

Description

low-rank plus sparse structure matrix estimation function solved by FISTA algorithm

Usage

1
fista_LpS(A, b, alpha = 0.25, lambda, mu, niter, backtracking = TRUE, x.true)

Arguments

A

design matrix

b

target vector

alpha

a positive constant the measuring the degree of separating sparse from low-rank, default value is 0.25

lambda

tuning parameter for sparse component

mu

tuning parameter for low-rank component

niter

the number of iterations for FISTA algorithm

backtracking

boolean argument, indicating whether use backtracking method or not

x.true

the true coefficient

Details

This function is the main estimation function. It provides the estimators for sparse and low rank components simultaneously and use the constraint space to separate sparse from low rank. The main theoretical results can be found in the papers: Basu Sumanta, Xianqi Li, George Michalidis (2019).

Value

A list consisting of:

sparse.comp

the estimated sparse component

lr.comp

the estimated low rank component

obj.val

the values of objective function

rel.err

the relative error, if we know the true transition matrix

References

Basu, Sumanta, Xianqi Li, and George Michailidis. "Low rank and structured modeling of high-dimensional vector autoregressions." IEEE Transactions on Signal Processing 67.5 (2019): 1207-1222.

Examples

1
2
3
4
5
6
7
A <- matrix(stats::rnorm(10000), nrow = 400, ncol = 25)
b <- matrix(stats::rnorm(10000), nrow = 400, ncol = 25)
lambda <- 0.1
mu <- 0.5
niter <- 1000
x.true <- diag(25)
fista_LpS(A, b, alpha = 0.25, lambda = lambda, mu = mu, niter = niter, TRUE, x.true = x.true)

kevinbai92/LSvarEstimate documentation built on May 8, 2020, 1:04 a.m.