Description Usage Arguments Details Value References Examples
low-rank plus sparse structure matrix estimation function solved by FISTA algorithm
1 |
A |
design matrix |
b |
target vector |
alpha |
a positive constant the measuring the degree of separating sparse from low-rank, default value is 0.25 |
lambda |
tuning parameter for sparse component |
mu |
tuning parameter for low-rank component |
niter |
the number of iterations for FISTA algorithm |
backtracking |
boolean argument, indicating whether use backtracking method or not |
x.true |
the true coefficient |
This function is the main estimation function. It provides the estimators for sparse and low rank components simultaneously and use the constraint space to separate sparse from low rank. The main theoretical results can be found in the papers: Basu Sumanta, Xianqi Li, George Michalidis (2019).
A list consisting of:
sparse.comp |
the estimated sparse component |
lr.comp |
the estimated low rank component |
obj.val |
the values of objective function |
rel.err |
the relative error, if we know the true transition matrix |
Basu, Sumanta, Xianqi Li, and George Michailidis. "Low rank and structured modeling of high-dimensional vector autoregressions." IEEE Transactions on Signal Processing 67.5 (2019): 1207-1222.
1 2 3 4 5 6 7 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.