boulton_solution_dlogt: boulton_solution_dlogt

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/boulton_utilities.R

Description

Function to calculate the derivative of the drawdown with respect to the log of time using the Boulton solution

Usage

1
boulton_solution_dlogt(ptest, a, t0, t1, phi, t)

Arguments

ptest

value

a

Slope of the straight line fitted to the drawdown data using the Cooper-Jacob approach

t0

Intercept of the straight line fitted to the drawdown data using the Cooper-Jacob approach (early time)

t1

Intercept of the straight line fitted to the drawdown data using the Cooper-Jacob approach (late time)

phi

Delay parameter. Dimensionless parameter defined as

φ = \frac{α_{1} r^{2} S}{T}

where α_{1} is a fitting parameter without a physical estimation, r is the distance between the pumping and observation well, S is the storage coefficient and T is the transmissivity.

t

value

Value

This function returns

Author(s)

Oscar Garcia-Cabrejo khaors@gmail.com

References

Boulton, N. The drawdown of the water-table under non-steady conditions near a pumped well in an unconfined formation. Proceedings of the Institution of Civil Engineers, 1954, 3, 564-579

See Also

Other boulton functions: boulton_WF_LT, boulton_calculate_parameters, boulton_solution, boulton_well_function

Examples

1
2
3
4
5
data(boulton)
ptest <- pumping_test('Well1', Q = 0.03, r = 20, t = boulton$t, s = boulton$s)
boulton.sol <- boulton_solution_initial(ptest)
boulton.dsol <- boulton_solution_dlogt(ptest, boulton.sol$a, boulton.sol$t0,
                boulton.sol$t1, boulton.sol$phi, boulton$t)

khaors/pumpingtest documentation built on Nov. 15, 2019, 8:10 p.m.