| ccImpute | R Documentation | 
Performs imputation of dropout values in single-cell RNA sequencing (scRNA-seq) data using a consensus clustering-based algorithm (ccImpute). This implementation includes performance enhancements over the original ccImpute method described in the paper "ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data" (DOI: https://doi.org/10.1186/s12859-022-04814-8).
Defines the generic function 'ccImpute' and a specific method for 'SingleCellExperiment' objects.
ccImpute.SingleCellExperiment(
  object,
  dist,
  nCeil = 2000,
  svdMaxRatio = 0.08,
  maxSets = 8,
  k,
  consMin = 0.75,
  kmNStart,
  kmMax = 1000,
  fastSolver = TRUE,
  BPPARAM = bpparam(),
  verbose = TRUE
)
ccImpute(
  object,
  dist,
  nCeil = 2000,
  svdMaxRatio = 0.08,
  maxSets = 8,
  k,
  consMin = 0.75,
  kmNStart,
  kmMax = 1000,
  fastSolver = TRUE,
  BPPARAM = bpparam(),
  verbose = TRUE
)
## S4 method for signature 'SingleCellExperiment'
ccImpute(
  object,
  dist,
  nCeil = 2000,
  svdMaxRatio = 0.08,
  maxSets = 8,
  k,
  consMin = 0.75,
  kmNStart,
  kmMax = 1000,
  fastSolver = TRUE,
  BPPARAM = bpparam(),
  verbose = TRUE
)
object | 
 A   | 
dist | 
 (Optional) A distance matrix used for cell similarity. calculations. If not provided, a weighted Spearman correlation matrix is calculated.  | 
nCeil | 
 (Optional) The maximum number of cells used to compute the
proportion of singular vectors (default:   | 
svdMaxRatio | 
 (Optional) The maximum proportion of singular vectors
used for generating subsets (default:   | 
maxSets | 
 (Optional) The maximum number of sub-datasets used for
consensus clustering (default:   | 
k | 
 (Optional) The number of clusters (cell groups) in the data. If not provided, it is estimated using the Tracy-Widom Bound.  | 
consMin | 
 (Optional) The low-pass filter threshold for processing the
consensus matrix (default:   | 
kmNStart | 
 nstart parameter passed to   | 
kmMax | 
 iter.max parameter passed to   | 
fastSolver | 
 (Optional) Whether to use mean of
non-zero values for calculating dropout values or a linear equation solver
(much slower and did show empirical difference in imputation performance)
(default:   | 
BPPARAM | 
 (Optional) A   | 
verbose | 
 (Optional) Whether to print progress messages
(default:   | 
A SingleCellExperiment class object with the imputed
expression values stored in the '"imputed"' assay.
library(BiocParallel)
library(splatter)
library(scater)
sce <- splatSimulate(group.prob = rep(1, 5)/5, sparsify = FALSE, 
        batchCells=100, nGenes=1000, method = "groups", verbose = FALSE, 
        dropout.type = "experiment")
sce <- logNormCounts(sce)
cores <- 2
BPPARAM = MulticoreParam(cores)
sce <- ccImpute(sce, BPPARAM=BPPARAM)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.