#' @title Parturition Prediction with Machine Learning
#
#' @description Use Machine Learning to predict parturition
#' @param jk output of BGBFun
#' @param spp species for model. Choices are "Elk", "FMD" (Female mule deer), or "BHS" (bighorn sheep)
#' @return data.frame of probability predictions for 0, 1, 2 (pre birth, neonate <48hrs old, neonate>48hrs old)
#' @keywords prediction
#' @export
#' @examples
#' \donttest{hg<-MLPartPred(mdat3, spp = "BHS")}
#'
MLPartPred<-function(jk,spp){
akl<-Ovis::MLVarPrep(jk)
akl<-akl[complete.cases(akl),]
if(spp=='Elk'){
data("ElkRealTimeRF",package='Part')
akl$Pred0<-as.numeric(randomForest:::predict.randomForest(rf,akl,type='prob')[,1])
akl$Pred1<-as.numeric(randomForest:::predict.randomForest(rf,akl,type='prob')[,2])
akl$Pred2<-as.numeric(randomForest:::predict.randomForest(rf,akl,type='prob')[,3])
}
if(spp %in% c('FMD', 'BHS')){
data("DeerRealTimeRF",package='Part')
akl$Pred0<-as.numeric(randomForest:::predict.randomForest(deerRF,akl,type='prob')[,1])
akl$Pred1<-as.numeric(randomForest:::predict.randomForest(deerRF,akl,type='prob')[,2])
akl$Pred2<-as.numeric(randomForest:::predict.randomForest(deerRF,akl,type='prob')[,3])
}
#rm(rf)
return(akl)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.