iCorShrink2Data: Adaptive regularized GLASSO of partial correlations from a...

Description Usage Arguments Examples

View source: R/iCorShrink2Data.R

Description

Performs an adaptove regularized GLASSO of partial correlations from a data matrix with missing data using the Fisher Z-score formulation

Usage

1
2
iCorShrink2Data(data_with_missing, alpha, expo = 0.05, shift = 0.01,
  lambda = 0.8, max_iter = 10, epsilon = 0.001)

Arguments

data_with_missing

The samples by features data matrix. May contain NA values.

alpha

The tuning parameter

expo

The exponent on the scaling used in the adaptive regularization of tuning parameter

shift

The shift in the scaling used in adaptive regularization of tuning parameter

lambda

The weight on the constraint for sample size bias

max_iter

The maximum number of iterations for the adaptive GLASSO run.

epsilon

The tolerance level for the relative error specifying when to stop

Examples

1
2
3
4
5
6
7
data("sample_by_feature_data")
out = iCorShrink2Data(sample_by_feature_data, alpha = 0.1, max_iter = 3)
corrplot::corrplot(as.matrix(out), diag = FALSE,
        col = colorRampPalette(c("blue", "white", "red"))(200),
        tl.pos = "td", tl.cex = 0.4, tl.col = "black",
        rect.col = "white",na.label.col = "white",
        method = "color", type = "upper")

kkdey/CorShrink documentation built on May 20, 2019, 10:28 a.m.