Description Usage Arguments Examples
View source: R/iCorShrink2Data.R
Performs an adaptove regularized GLASSO of partial correlations from a data matrix with missing data using the Fisher Z-score formulation
1 2 | iCorShrink2Data(data_with_missing, alpha, expo = 0.05, shift = 0.01,
lambda = 0.8, max_iter = 10, epsilon = 0.001)
|
data_with_missing |
The samples by features data matrix. May contain NA values. |
alpha |
The tuning parameter |
expo |
The exponent on the scaling used in the adaptive regularization of tuning parameter |
shift |
The shift in the scaling used in adaptive regularization of tuning parameter |
lambda |
The weight on the constraint for sample size bias |
max_iter |
The maximum number of iterations for the adaptive GLASSO run. |
epsilon |
The tolerance level for the relative error specifying when to stop |
1 2 3 4 5 6 7 | data("sample_by_feature_data")
out = iCorShrink2Data(sample_by_feature_data, alpha = 0.1, max_iter = 3)
corrplot::corrplot(as.matrix(out), diag = FALSE,
col = colorRampPalette(c("blue", "white", "red"))(200),
tl.pos = "td", tl.cex = 0.4, tl.col = "black",
rect.col = "white",na.label.col = "white",
method = "color", type = "upper")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.