covariance | R Documentation |
Define covariances between residual terms in a lvm
-object.
## S3 replacement method for class 'lvm'
covariance(object, var1=NULL, var2=NULL, constrain=FALSE, pairwise=FALSE,...) <- value
object |
|
... |
Additional arguments to be passed to the low level functions |
var1 |
Vector of variables names (or formula) |
var2 |
Vector of variables names (or formula) defining pairwise
covariance between |
constrain |
Define non-linear parameter constraints to ensure positive definite structure |
pairwise |
If TRUE and |
value |
List of parameter values or (if |
The covariance
function is used to specify correlation structure
between residual terms of a latent variable model, using a formula syntax.
For instance, a multivariate model with three response variables,
Y_1 = \mu_1 + \epsilon_1
Y_2 = \mu_2 + \epsilon_2
Y_3 = \mu_3 + \epsilon_3
can be specified as
m <- lvm(~y1+y2+y3)
Pr. default the two variables are assumed to be independent. To add a
covariance parameter r = cov(\epsilon_1,\epsilon_2)
, we execute the
following code
covariance(m) <- y1 ~ f(y2,r)
The special function f
and its second argument could be omitted thus
assigning an unique parameter the covariance between y1
and
y2
.
Similarily the marginal variance of the two response variables can be fixed
to be identical (var(Y_i)=v
) via
covariance(m) <- c(y1,y2,y3) ~ f(v)
To specify a completely unstructured covariance structure, we can call
covariance(m) <- ~y1+y2+y3
All the parameter values of the linear constraints can be given as the right
handside expression of the assigment function covariance<-
if the
first (and possibly second) argument is defined as well. E.g:
covariance(m,y1~y1+y2) <- list("a1","b1")
covariance(m,~y2+y3) <- list("a2",2)
Defines
var(\epsilon_1) = a1
var(\epsilon_2) = a2
var(\epsilon_3) = 2
cov(\epsilon_1,\epsilon_2) = b1
Parameter constraints can be cleared by fixing the relevant parameters to
NA
(see also the regression
method).
The function covariance
(called without additional arguments) can be
used to inspect the covariance constraints of a lvm
-object.
A lvm
-object
Klaus K. Holst
regression<-
, intercept<-
,
constrain<-
parameter<-
, latent<-
,
cancel<-
, kill<-
m <- lvm()
### Define covariance between residuals terms of y1 and y2
covariance(m) <- y1~y2
covariance(m) <- c(y1,y2)~f(v) ## Same marginal variance
covariance(m) ## Examine covariance structure
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.